15 research outputs found

    Influence of the downwash airflow in Hexacopter Drone on the spray distribution pattern of boom sprayer

    Get PDF
    The spray characteristics of drone sprayers are significantly influenced by the downwash airflow produced by Drone multi-rotors. The present study aimed to study the influence of downwash airflow and the operational parameters of Drone sprayer, viz., flight height, travel speed, rotor configuration, payload and wind velocity on the spray distribution pattern for boom sprayer attachment to Drone. The boom type sprayer consisted of four numbers of flat fan nozzles placed at three different spacing viz., 30, 45 and 60 cm between each nozzle. The spray distribution pattern of the Hexacopter Drone was studied at three different operating pressures, viz., 3.0, 4.0 and 5.0 kg cm-2. A spray patternator of 5 m x 5 m was developed per the Bureau of Indian Standards (BIS) standard to study the spray uniformity of volume distribution pattern. The best spray uniformity was found as 0.37 % CV value at 60 cm nozzle spacing and 4 kg cm-2 operating pressure. The optimised parameters viz., 60 cm of nozzle spacing and 4 kg cm-2 operating pressure, the influence of downwash airflow on the spray volume distribution of hexacopter Drone with boom spray attachment were studied. The Drone hovered at three different heights, viz., 1.0, 2.0 and 3.0 m from the top of the patternator and spray operating pressure was maintained at 4 kg cm-2. It was observed that less volume of spray was collected at the middle portion when the Unmanned Aerial Vehicle (UAV) was hovered at 1.0 m height due to the direct impact of downwash airflow of rotors. The uniform spray volume distribution pattern was observed when Drone hovered from 1.0 m to 3.0 m height. A round vertex pattern of spray pattern was generated with boom type nozzles configuration due to the direct impact of downwash airflow of rotors. This study will be helpful in the configuration of nozzles attached to the drone sprayers, optimization of spray operational parameters, and revealing spray volume distribution pattern

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link

    Peers and Network Growth: Evidence from a Natural Experiment

    No full text

    Liposomal amikacin dry powder inhaler: Effect of fines on in vitro performance

    No full text
    The aim of the present investigation was to prepare and evaluate the influence of adding fines on the in vitro performance of liposomal amikacin dry powder inhaler (AMK LDPI) formulations. Liposomes composed of hydrogenated soyaphosphatidylcholine, cholesterol and saturated soyaphosphatidylglycerol (AMK 1), or stearylamine (AMK 2) were prepared by a reverse phase evaporation technique, extruded to reduce size and separated from unentrapped drug. Purified liposomal dispersion was subjected to lyophilization using optimized cryoprotectant to achieve maximum percentage drug retentio (PDR). Lactose carrier in varying mass ratios with or without addition of fines in different mixing sequences was used to formulate AMK LDPI formulations. AMK LDPI formulations were characterized for angle of repose, compressibility index, dispersibility index, scanning electron microscopy, and fine perticle fraction (FPF). PDR was found to be 97.6%±2.2% for AMK1 and 98.5%±1.9% for AMK2 using sucrose as optimized cryoprotectant in lipid:sucrose ratio of 1∶4. Lactose carrier containing 10% fines (wt/wt) was found to be the optimum blend at 1∶5 mass ratio of liposome:lactose. The addition of fines and the order of mixing of fines were found to influence the FPF with significantly different device fractions. FPF of AMK LDPI formulations using Rotahaler as the delivery device at 30, 60, and 90 L/min were found to be 21.85%±2.2% and 24.6%±2.4%, 25.9% ±1.8% and 29.2%±2.1%, and 29.5%±2.6% and 34.2%±2.0% for AMK1 and AMK2, respectively. From the studies performed in this investigation, it was observed that liposomal charge, addition of fines and order of mixing fines, has a significant effect (P<.05) on in vitro deposition of drug from LDPI formulation

    RETRACTED ARTICLE: The Influence of Sodium Hyaluronate, l-Leucine and Sodium Taurocholate on the Nebulization of Aqueous Betamethasone-17-Valerate Suspensions

    No full text
    The purpose of this research was to evaluate the variables that are suggested to influence the adsorption of the hydrophilic hyaluronic acid (HA) onto the surface of the hydrophobic betamethasone-17-valerate (BV) particles in order to formulate a nebulizable suspension. The adsorption of HA from aqueous solutions (0.04% to 0.16%, w/v) to a fixed BV concentration (0.04%, w/v) under different experimental conditions, was investigated. The method of preparation of HA-BV suspensions involved suspending BV particles either in the hydrated HA solution (method 1) or in water followed by addition of solid HA (method 2). Other variables like the time required for the adsorption to complete and temperature at which adsorption is carried out were studied. The nebulization of the suspensions was tested via an air jet nebulizer connected to a twin stage impinger. In order to improve the nebulization behavior of the optimized suspension, l-leucine or sodium taurocholate was incorporated in increasing concentrations (0.01–0.04%, w/v). The optimized suspension, having a nebulization efficiency of 33.75%, was achieved following the adsorption of HA (0.1%, w/v) onto BV particles adopting method 2 of preparation and extending for three days at 4 °C. Incorporation of either l-leucine or sodium taurocholate significantly decreased the aggregate size of the optimized suspension and consequently caused significant increases in the nebulization efficiency to reach 46.87% and 56.25%, respectively
    corecore