10 research outputs found
Diversity in Functional Organization of Class I and Class II Biotin Protein Ligase
The cell envelope of Mycobacterium tuberculosis
(M.tuberculosis) is composed of a variety of lipids
including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart
rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC)
provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid
and essential for mycolic acid synthesis respectively. Biotin Protein Ligase
(BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating
it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate
for Escherichia coli BirA, failed to serve as substrate for
M. tuberculosis Biotin Protein Ligase
(MtBPL). MtBPL specifically biotinylates
homologous BCCP domain, MtBCCP87, but not
EcBCCP87. This is a unique feature of
MtBPL as EcBirA lacks such a stringent
substrate specificity. This feature is also reflected in the lack of
self/promiscuous biotinylation by MtBPL. The N-terminus/HTH
domain of EcBirA has the self-biotinable lysine residue that is
inhibited in the presence of Schatz peptide, a peptide designed to act as a
universal acceptor for EcBirA. This suggests that when biotin
is limiting, EcBirA preferentially catalyzes, biotinylation of
BCCP over self-biotinylation. R118G mutant of EcBirA showed
enhanced self and promiscuous biotinylation but its homologue, R69A
MtBPL did not exhibit these properties. The catalytic
domain of MtBPL was characterized further by limited
proteolysis. Holo-MtBPL is protected from proteolysis by
biotinyl-5′ AMP, an intermediate of MtBPL catalyzed
reaction. In contrast, apo-MtBPL is completely digested by
trypsin within 20 min of co-incubation. Substrate selectivity and inability to
promote self biotinylation are exquisite features of MtBPL and
are a consequence of the unique molecular mechanism of an enzyme adapted for the
high turnover of fatty acid biosynthesis
Biochemical Properties and Biological Function of a Monofunctional Microbial Biotin Protein Ligase
Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens
Brucella BioR Regulator Defines a Complex Regulatory Mechanism for Bacterial Biotin Metabolism
The C-terminal domain of biotin protein ligase from E-coli is required for catalytic activity
Copyright © 2001 The Protein SocietyBiotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.Anne Chapman-Smith, Terrence D. Mulhern, Fiona Whelan, John E. Cronan, Jr. and John C. Wallac
Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase
Cross-Reactive HIV-1-Neutralizing Human Monoclonal Antibodies Identified from a Patient with 2F5-Like Antibodies ▿ †
The genes encoding broadly HIV-1-neutralizing human monoclonal antibodies (MAbs) are highly divergent from their germ line counterparts. We have hypothesized that such high levels of somatic hypermutation could pose a challenge for elicitation of the broadly neutralizing (bn) Abs and that identification of less somatically mutated bn Abs may help in the design of effective vaccine immunogens. In a quest for such bn Abs, phage- and yeast-displayed antibody libraries, constructed using peripheral blood mononuclear cells (PBMCs) from a patient with bn serum containing Abs targeting the epitope of the bn MAb 2F5, were panned against peptides containing the 2F5 epitope and against the HIV-1 gp140JR-FL. Two MAbs (m66 and m66.6) were identified; the more mutated variant (m66.6) exhibited higher HIV-1-neutralizing activity than m66, although it was weaker than 2F5 in a TZM-bl cell assay. Binding of both MAbs to gp41 alanine substitution mutant peptides required the DKW664–666 core of the 2F5 epitope and two additional upstream residues (L660,663). The MAbs have long (21-residue) heavy-chain third complementarity-determining regions (CDR-H3s), and m66.6 (but not m66) exhibited polyspecific reactivity to self- and non-self-antigens. Both m66 and m66.6 are significantly less divergent from their germ line Ab counterparts than 2F5—they have a total of 11 and 18 amino acid changes, respectively, from the closest VH and Vκ germ line gene products compared to 25 for 2F5. These new MAbs could help explore the complex maturation pathways involved in broad neutralization and its relationship with auto- and polyreactivity and may aid design of vaccine immunogens and development of therapeutics against HIV-1 infection
