896 research outputs found

    Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells

    Get PDF
    Organic-inorganic perovskites are currently one of the hottest topics in photovoltaic (PV) research, with power conversion efficiencies (PCEs) of cells on a laboratory scale already competing with those of established thin-film PV technologies. Most enhancements have been achieved by improving the quality of the perovskite films, suggesting that the optimization of film formation and crystallization is of paramount importance for further advances. Here, we review the various techniques for film formation and the role of the solvents and precursors in the processes. We address the role chloride ions play in film formation of mixed-halide perovskites, which is an outstanding question in the field. We highlight the material properties that are essential for high-efficiency operation of solar cells, and identify how further improved morphologies might be achieved

    Critical Assessment of the Use of Excess Lead Iodide in Lead Halide Perovskite Solar Cells.

    Get PDF
    It is common practice in the lead halide perovskite solar cell field to add a small molar excess of lead iodide (PbI2) to the precursor solution to increase the device performance. However, recent reports have shown that an excess of PbI2 can accelerate performance loss. In addition, PbI2 is photoactive (band gap ∼2.3 eV), which may lead to parasitic absorption losses in a solar cell. Here we show that devices using small quantities of excess PbI2 exhibit better device performance as compared with stoichiometric devices, both initially and for the duration of a stability test under operating conditions, primarily by enhancing the charge extraction. However, the photolysis of PbI2 negates the beneficial effect on charge extraction by leaving voids in the perovskite film and introduces trap states that are detrimental for device performance. We propose that although excess PbI2 provides a good template for enhanced performance, the community must continue to seek other additives or synthesis routes that fulfill the same beneficial role as excess PbI2, but without the photolysis that negates these beneficial effects under long-term device operation

    Spatially resolved photoluminescence analysis of Se passivation and defect formation in CdSex_{x}Te1−x_{1-x} thin films

    Full text link
    CdTe is the most commercially successful thin-film photovoltaic technology to date. The recent development of Se-alloyed CdSex_{x}Te1−x_{1-x} layers in CdTe solar cells has led to higher device efficiencies, due to a lowered bandgap improving the photocurrent, improved voltage characteristics and longer carrier lifetimes. Evidence from cross-sectional electron microscopy is widely believed to indicate that Se passivates defects in CdSex_{x}Te1−x_{1-x} solar cells, and that this is the reason for better lifetimes and voltages in these devices. Here, we utilise spatially resolved photoluminescence measurements of CdSex_{x}Te1−x_{1-x} thin films on glass to study the effects of Se on carrier recombination in the material, isolated from the impact of conductive interfaces and without the need to prepare cross-sections through the samples. We find further evidence to support Se passivation of grain boundaries, but also identify an associated increase in below-bandgap photoluminescence that indicates the presence of Se-enhanced luminescent defects. Our results show that Se treatment, in tandem with Cl passivation, does increase radiative efficiencies. However, the simultaneous enhancement of defects within the grain interiors suggests that although it is overall beneficial, Se incorporation may still ultimately limit the maximum attainable efficiency of CdSex_{x}Te1−x_{1-x} solar cells

    Reversible Removal of Intermixed Shallow States by Light Soaking in Multication Mixed Halide Perovskite Films.

    Get PDF
    The highest reported efficiencies of metal halide perovskite (MHP) solar cells are all based on mixed perovskites, such as (FA,MA,Cs)Pb(I1-x Br x )3. Despite demonstrated structural changes induced by light soaking, it is unclear how the charge carrier dynamics are affected across this entire material family. Here, various (FA,MA,Cs)Pb(I1-x Br x )3 perovskite films are light-soaked in nitrogen, and changes in optoelectronic properties are investigated through time-resolved microwave conductivity (TRMC) and optical and structural techniques. To fit the TRMC decay kinetics obtained for pristine (FA,MA,Cs)Pb(I1-x Br x )3 for various excitation densities, additional shallow states have to be included, which are not required for describing TRMC traces of single-cation MHPs. These shallow states can, independently of x, be removed by light soaking, which leads to a reduction in the imbalance between the diffusional motion of electrons and holes. We interpret the shallow states as a result of initially well-intermixed halide distributions, which upon light soaking segregate into domains with distinct band gaps.Z.A.-G. acknowledges funding from a Winton Studentship and ICON Studentship from the Lloyd’s Register Foundation. M.A.-J. thanks Cambridge Materials Limited and EPSRC (Grant Number EP/M005143/1) for their funding and technical support. S.D.S. acknowledges the Royal Society and Tata Group (UF150033) for funding

    Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement.

    Get PDF
    There is a growing interest in obtaining high quality monolayer transition metal disulfides for optoelectronic applications. Surface treatments using a range of chemicals have proven effective to improve the photoluminescence yield of these materials. However, the underlying mechanism for the photoluminescence enhancement is not clear, which prevents a rational design of passivation strategies. Here, a simple and effective approach to significantly enhance the photoluminescence is demonstrated by using a family of cation donors, which we show to be much more effective than commonly used p-dopants. We develop a detailed mechanistic picture for the action of these cation donors and demonstrate that one of them, bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI), enhances the photoluminescence of both MoS2 and WS2 to a level double that of the currently best performing super-acid trifluoromethanesulfonimide (H-TFSI) treatment. In addition, the ionic salts used in our treatments are compatible with greener solvents and are easier to handle than super-acids, providing the possibility of performing treatments during device fabrication. This work sets up rational selection rules for ionic chemicals to passivate transition metal disulfides and increases their potential in practical optoelectronic applications
    • …
    corecore