1,215 research outputs found
Alien Registration- Stairs, George D. (Blaine, Aroostook County)
https://digitalmaine.com/alien_docs/26108/thumbnail.jp
PSR J1453+1902 and the radio luminosities of solitary versus binary millisecond pulsars
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar
discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our
observations show that PSR J1453+1902 is solitary and has a proper motion of
8(2) mas/yr. At the nominal distance of 1.2 kpc estimated from the pulsar's
dispersion measure, this corresponds to a transverse speed of 46(11) km/s,
typical of the millisecond pulsar population. We analyse the current sample of
55 millisecond pulsars in the Galactic disk and revisit the question of whether
the luminosities of isolated millisecond pulsars are different from their
binary counterparts. We demonstrate that the apparent differences in the
luminosity distributions seen in samples selected from 430-MHz surveys can be
explained by small-number statistics and observational selection biases. An
examination of the sample from 1400-MHz surveys shows no differences in the
distributions. The simplest conclusion from the current data is that the spin,
kinematic, spatial and luminosity distributions of isolated and binary
millisecond pulsars are consistent with a single homogeneous population.Comment: 8 pages, 5 figures and 3 tables, accepted for publication by MNRA
CoRoT measures solar-like oscillations and granulation in stars hotter than the Sun
Oscillations of the Sun have been used to understand its interior structure.
The extension of similar studies to more distant stars has raised many
difficulties despite the strong efforts of the international community over the
past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite,
launched in December 2006, has now measured oscillations and the stellar
granulation signature in three main sequence stars that are noticeably hotter
than the sun. The oscillation amplitudes are about 1.5 times as large as those
in the Sun; the stellar granulation is up to three times as high. The stellar
amplitudes are about 25% below the theoretic values, providing a measurement of
the nonadiabaticity of the process ruling the oscillations in the outer layers
of the stars.Comment: 7 pages, 4 figure
Changes in Polarization Position Angle across the Eclipse in the Double Pulsar System
We investigate the changes in polarization position angle in radiation from
pulsar A around the eclipse in the Double Pulsar system PSR J0737-3039A/B at
the 20 cm and 50 cm wavelengths using the Parkes 64-m telescope. The changes
are ~2\sigma\ during and shortly after the eclipse at 20 cm but less
significant at 50 cm. We show that the changes in position angle during the
eclipse can be modelled by differential synchrotron absorption in the eclipse
regions. Position angle changes after the eclipse are interpreted as Faraday
rotation in the magnetotail of pulsar B. Implied charge densities are
consistent with the Goldreich-Julian density, suggesting that the particle
energies in the magnetotail are mildly relativistic.Comment: Accepted for publication in The Astrophysical Journal Letter
Strong field effects on binary systems in Einstein-aether theory
"Einstein-aether" theory is a generally covariant theory of gravity
containing a dynamical preferred frame. This article continues an examination
of effects on the motion of binary pulsar systems in this theory, by
incorporating effects due to strong fields in the vicinity of neutron star
pulsars. These effects are included through an effective approach, by treating
the compact bodies as point particles with nonstandard, velocity dependent
interactions parametrized by dimensionless "sensitivities". Effective
post-Newtonian equations of motion for the bodies and the radiation damping
rate are determined. More work is needed to calculate values of the
sensitivities for a given fluid source, so precise constraints on the theory's
coupling constants cannot yet be stated. It is shown, however, that strong
field effects will be negligible given current observational uncertainties if
the dimensionless couplings are less than roughly 0.01 and two conditions that
match the PPN parameters to those of pure general relativity are imposed. In
this case, weak field results suffice and imply one further condition on the
couplings. Thus, there exists a one-parameter family of Einstein-aether
theories with "small-enough" couplings that passes all current observational
tests. No conclusion can yet be reached for large couplings.Comment: 23 pages, 1 figure; v2: fixed error in Eqn. (70) and resulting bounds
on c'
Generic features of Einstein-Aether black holes
We reconsider spherically symmetric black hole solutions in Einstein-Aether
theory with the condition that this theory has identical PPN parameters as
those for general relativity, which is the main difference from the previous
research. In contrast with previous study, we allow superluminal propagation of
a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a
spin-0 "horizon" inside an event horizon. We allow a singularity at a spin-0
"horizon" since it is concealed by the event horizon. If we allow such a
configuration, the kinetic term of the Aether field can be large enough for
black holes to be significantly different from Schwarzschild black holes with
respect to ADM mass, innermost stable circular orbit, Hawking temperature, and
so on. We also discuss whether or not the above features can be seen in more
generic vector-tensor theories.Comment: 9 pages, 9 figures, basic equations and their analytic arguments are
adde
VLBI astrometry of PSR J2222-0137: a pulsar distance measured to 0.4% accuracy
The binary pulsar J2222-0137 is an enigmatic system containing a partially
recycled millisecond pulsar and a companion of unknown nature. Whilst the low
eccentricity of the system favors a white dwarf companion, an unusual double
neutron star system is also a possibility, and optical observations will be
able to distinguish between these possibilities. In order to allow the absolute
luminosity (or upper limit) of the companion object to be properly calibrated,
we undertook astrometric observations with the Very Long Baseline Array to
constrain the system distance via a measurement of annual geometric parallax.
With these observations, we measure the parallax of the J2222-0137 system to be
3.742 +0.013 -0.016 milliarcseconds, yielding a distance of 267.3 +1.2 -0.9 pc,
and measure the transverse velocity to be 57.1 +0.3 -0.2 km/s. Fixing these
parameters in the pulsar timing model made it possible to obtain a measurement
of Shapiro delay and hence the system inclination, which shows that the system
is nearly edge-on (sin i = 0.9985 +/- 0.0005). Furthermore, we were able to
detect the orbital motion of J2222-0137 in our VLBI observations and measure
the longitude of ascending node. The VLBI astrometry yields the most accurate
distance obtained for a radio pulsar to date, and is furthermore the most
accurate parallax for any radio source obtained at "low" radio frequencies
(below ~5 GHz, where the ionosphere dominates the error budget). Using the
astrometric results, we show the companion to J2222-0137 will be easily
detectable in deep optical observations if it is a white dwarf. Finally, we
discuss the implications of this measurement for future ultra-high-precision
astrometry, in particular in support of pulsar timing arrays.Comment: 22 pages, 7 figures, accepted for publication in Ap
- …