578 research outputs found

    A universal velocity distribution of relaxed collisionless structures

    Full text link
    Several general trends have been identified for equilibrated, self-gravitating collisionless systems, such as density or anisotropy profiles. These are integrated quantities which naturally depend on the underlying velocity distribution function (VDF) of the system. We study this VDF through a set of numerical simulations, which allow us to extract both the radial and the tangential VDF. We find that the shape of the VDF is universal, in the sense that it depends only on two things namely the dispersion (radial or tangential) and the local slope of the density. Both the radial and the tangential VDF's are universal for a collection of simulations, including controlled collisions with very different initial conditions, radial infall simulation, and structures formed in cosmological simulations.Comment: 13 pages, 6 figures; oversimplified analysis corrected; changed abstract and conclusions; significantly extended discussio

    Toward an accurate mass function for precision cosmology

    Full text link
    Cosmological surveys aim to use the evolution of the abundance of galaxy clusters to accurately constrain the cosmological model. In the context of LCDM, we show that it is possible to achieve the required percent level accuracy in the halo mass function with gravity-only cosmological simulations, and we provide simulation start and run parameter guidelines for doing so. Some previous works have had sufficient statistical precision, but lacked robust verification of absolute accuracy. Convergence tests of the mass function with, for example, simulation start redshift can exhibit false convergence of the mass function due to counteracting errors, potentially misleading one to infer overly optimistic estimations of simulation accuracy. Percent level accuracy is possible if initial condition particle mapping uses second order Lagrangian Perturbation Theory, and if the start epoch is between 10 and 50 expansion factors before the epoch of halo formation of interest. The mass function for halos with fewer than ~1000 particles is highly sensitive to simulation parameters and start redshift, implying a practical minimum mass resolution limit due to mass discreteness. The narrow range in converged start redshift suggests that it is not presently possible for a single simulation to capture accurately the cluster mass function while also starting early enough to model accurately the numbers of reionisation era galaxies, whose baryon feedback processes may affect later cluster properties. Ultimately, to fully exploit current and future cosmological surveys will require accurate modeling of baryon physics and observable properties, a formidable challenge for which accurate gravity-only simulations are just an initial step.Comment: revised in response to referee suggestions, MNRAS accepte

    Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact

    Get PDF
    The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earth's mantle preserves ancient (or "primordial") heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earth's mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.Comment: Comments are welcom

    Hormonal replacement therapy, prothrombotic mutations and the risk of venous thrombosis

    Get PDF
    Hormone replacement therapy (HRT) increases the risk of venous thrombosis. We investigated whether this risk is affected by carriership of hereditary prothrombotic abnormalities. Therefore, we determined the two most common prothrombotic mutations, factor V Leiden and prothrombin 20210A in women who participated in a case-control study on venous thrombosis. Relative risks were expressed as odds ratios (OR) with 95% confidence intervals (CI95). Among 7 7 women aged 45-64 years with a first venous thrombosis, 51% were receiving HRT at the time of thrombosis, compared with 24% of control women (OR = 3.3, CI95 1.8-5.8). Among the patients, 23% had a prothrombotic defect, versus 7% among the control women (OR = 3.8, CI95 1.7- 8.5). Women who had factor V Leiden and used HRT had a 15-fold increased risk (OR = 15.5, CI95 3.1-77), which exceeded the expected joint odds ratio of 6.1 (under an additive model). We conclude that the thrombotic risk of HRT may particularly affect women with prothrombotic mutations. Efforts to avoid HRT in women with increased risk of thrombosis are advisable

    Dark Matter Substructure in Galactic Halos

    Full text link
    We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialised extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than Draco and Ursa-Minor i.e. bound masses > 10^8Mo and tidally limited sizes > kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk leading to significant resonant and impulsive heating. Their abundance and singular density profiles has important implications for the existence of old thin disks, cold stellar streams, gravitational lensing and indirect/direct detection experiments.Comment: Astrophysical Journal Letters. 4 pages, latex. Simulation images and movies at http://star-www.dur.ac.uk:80/~moore

    Density profiles and substructure of dark matter halos: converging results at ultra-high numerical resolution

    Get PDF
    Can N-body simulations reliably determine the structural properties of dark matter halos? Focussing on a Virgo-sized galaxy cluster, we increase the resolution of current ``high resolution simulations'' by almost an order of magnitude to examine the convergence of the important physical quantities. We have 4 million particles within the cluster and force resolution 0.5 kpc/h (0.05% of the virial radius). The central density profile has a logarithmic slope of -1.5, as found in lower resolution studies of the same halo, indicating that the profile has converged to the ``physical'' limit down to scales of a few kpc. Also the abundance of substructure is consistent with that derived from lower resolution runs; on the scales explored, the mass and circular velocity functions are close to power laws of exponents ~ -1.9 and -4. Overmerging appears to be globally unimportant for suhalos with circular velocities > 100 km/s. We can trace most of the cluster progenitors from z=3 to the present; the central object (the dark matter analog of a cD galaxy)is assembled between z=3 and 1 from the merging of a dozen halos with v_circ \sim 300 km/s. The mean circular velocity of the subhalos decreases by ~ 20% over 5 billion years, due to tidal mass loss. The velocity dispersions of halos and dark matter globally agree within 10%, but the halos are spatially anti-biased, and, in the very central region of the cluster, they show positive velocity bias; however, this effect appears to depend on numerical resolution.Comment: 19 pages, 13 figures, ApJ, in press. Text significantly clarifie

    The inner structure of ΛCDM haloes - II. Halo mass profiles and low surface brightness galaxy rotation curves

    Get PDF
    We use a set of high-resolution cosmological N-body simulations to investigate the inner mass profile of galaxy-sized cold dark matter (CDM) haloes. These simulations extend the numerical convergence study presented in Paper I of this series, and demonstrate that the mass profile of CDM galaxy haloes can be robustly estimated beyond a minimum converged radius of order rconv∼ 1 h−1 kpc in our highest-resolution runs. The density profiles of simulated haloes become progressively shallower from the virial radius inwards, and show no sign of approaching a well-defined power law near the centre. At rconv, the density profile is steeper than expected from the formula proposed by Navarro, Frenk & White, which has a ρ∝r−1 cusp, but significantly shallower than the steeply divergent ρ∝r−1.5 cusp proposed by Moore et al. We perform a direct comparison of the spherically averaged dark matter circular velocity profiles with Hα rotation curves of a sample of low surface brightness (LSB) galaxies. We find that most galaxies in the sample (about 70 per cent) have rotation curves that are consistent with the structure of CDM haloes. Of the remainder, 20 per cent have rotation curves which cannot be fit by any smooth fitting function with few free parameters, and 10 per cent are inconsistent with CDM haloes. However, the latter consist mostly of rotation curves that do not extend to large enough radii to accurately determine their shapes and maximum velocities. We conclude that the inner structure of CDM haloes is not manifestly inconsistent with the rotation curves of LSB galaxie

    Dynamical Dark Energy simulations: high accuracy Power Spectra at high redshift

    Full text link
    Accurate predictions on non--linear power spectra, at various redshift z, will be a basic tool to interpret cosmological data from next generation mass probes, so obtaining key information on Dark Energy nature. This calls for high precision simulations, covering the whole functional space of w(z) state equations and taking also into account the admitted ranges of other cosmological parameters; surely a difficult task. A procedure was however suggested, able to match the spectra at z=0, up to k~3, hMpc^{-1}, in cosmologies with an (almost) arbitrary w(z), by making recourse to the results of N-body simulations with w = const. In this paper we extend such procedure to high redshift and test our approach through a series of N-body gravitational simulations of various models, including a model closely fitting WMAP5 and complementary data. Our approach detects w= const. models, whose spectra meet the requirement within 1% at z=0 and perform even better at higher redshift, where they are close to a permil precision. Available Halofit expressions, extended to (constant) w \neq -1 are unfortunately unsuitable to fit the spectra of the physical models considered here. Their extension to cover the desired range should be however feasible, and this will enable us to match spectra from any DE state equation.Comment: method definitely improved in semplicity and efficacy,accepted for publication on JCA

    High precision spectra at large redshift for dynamical DE cosmologies

    Full text link
    The next generation mass probes will investigate DE nature by measuring non-linear power spectra at various z, and comparing them with high precision simulations. Producing a complete set of them, taking into account baryon physics and for any DE state equation w(z), would really be numerically expensive. Regularities reducing such duty are essential. This paper presents further n-body tests of a relation we found, linking models with DE state parameter w(z) to const.-w models, and also tests the relation in hydro simulations.Comment: PASCOS 2010, the 16th International Symposium on Particles, Strings and Cosmology, Valencia (Spain), July 19th - 23rd, 201
    corecore