92 research outputs found

    Contribution for the derivation of a soil screening value (SSV) for uranium, using a natural reference soil

    Get PDF
    In order to regulate the management of contaminated land, many countries have been deriving soil screening values (SSV). However, the ecotoxicological data available for uranium is still insufficient and incapable to generate SSVs for European soils. In this sense, and so as to make up for this shortcoming, a battery of ecotoxicological assays focusing on soil functions and organisms, and a wide range of endpoints was carried out, using a natural soil artificially spiked with uranium. In terrestrial ecotoxicology, it is widely recognized that soils have different properties that can influence the bioavailability and the toxicity of chemicals. In this context, SSVs derived for artificial soils or for other types of natural soils, may lead to unfeasible environmental risk assessment. Hence, the use of natural regional representative soils is of great importance in the derivation of SSVs. A Portuguese natural reference soil PTRS1, from a granitic region, was thereby applied as test substrate. This study allowed the determination of NOEC, LOEC, EC20 and EC50 values for uranium. Dehydrogenase and urease enzymes displayed the lowest values (34.9 and ,134.5 mg U Kg, respectively). Eisenia andrei and Enchytraeus crypticus revealed to be more sensitive to uranium than Folsomia candida. EC50 values of 631.00, 518.65 and 851.64 mg U Kg were recorded for the three species, respectively. Concerning plants, only Lactuca sativa was affected by U at concentrations up to 1000 mg U kg1. The outcomes of the study may in part be constrained by physical and chemical characteristics of soils, hence contributing to the discrepancy between the toxicity data generated in this study and that available in the literature. Following the assessment factor method, a predicted no effect concentration (PNEC) value of 15.5 mg kg21dw was obtained for U. This PNEC value is proposed as a SSV for soils similar to the PTRS1

    From Mendel’s discovery on pea to today’s plant genetics and breeding

    Get PDF
    In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner

    Flora of toxic depots in selected industrial zones

    No full text
    Floristic composition in three industrial areas with soils contaminated by heavy metals (As, Cd, Cu, Hg, Pb, Zn) and organic pollutants (polychlorinated biphenyls) was studied. The content of Pb was only significantly correlated with the floristic composition and explained 13.8% of its variability considering spatial dependency of the sites. No correlation was found for PCBs. Altogether, 237 plant vascular species were found at three study sites (117, 133 and 105, respectively). The three study areas differed in their species composition represented by their own characteristic species. The gradient in the content of natives/non-natives, species number, prevailing life forms and indicator values for plant species investigated was revealed. Based on our results, for phytoremediation purposes we can select productive plant species with high biomass and ability to accumulate large amounts of heavy metals or organic compounds and surviving on soils with low mineral content
    • …
    corecore