322 research outputs found
Life, Death and Preferential Attachment
Scientific communities are characterized by strong stratification. The highly
skewed frequency distribution of citations of published scientific papers
suggests a relatively small number of active, cited papers embedded in a sea of
inactive and uncited papers. We propose an analytically soluble model which
allows for the death of nodes. This model provides an excellent description of
the citation distributions for live and dead papers in the SPIRES database.
Further, this model suggests a novel and general mechanism for the generation
of power law distributions in networks whenever the fraction of active nodes is
small.Comment: 5 pages, 2 figure
Correlations in Networks associated to Preferential Growth
Combinations of random and preferential growth for both on-growing and
stationary networks are studied and a hierarchical topology is observed. Thus
for real world scale-free networks which do not exhibit hierarchical features
preferential growth is probably not the main ingredient in the growth process.
An example of such real world networks includes the protein-protein interaction
network in yeast, which exhibits pronounced anti-hierarchical features.Comment: 4 pages, 4 figure
Live and Dead Nodes
In this paper, we explore the consequences of a distinction between `live'
and `dead' network nodes; `live' nodes are able to acquire new links whereas
`dead' nodes are static. We develop an analytically soluble growing network
model incorporating this distinction and show that it can provide a
quantitative description of the empirical network composed of citations and
references (in- and out-links) between papers (nodes) in the SPIRES database of
scientific papers in high energy physics. We also demonstrate that the death
mechanism alone can result in power law degree distributions for the resulting
network.Comment: 12 pages, 3 figures. To be published in Computational and
Mathematical Organization Theor
The Geography of Scientific Productivity: Scaling in U.S. Computer Science
Here we extract the geographical addresses of authors in the Citeseer
database of computer science papers. We show that the productivity of research
centres in the United States follows a power-law regime, apart from the most
productive centres for which we do not have enough data to reach definite
conclusions. To investigate the spatial distribution of computer science
research centres in the United States, we compute the two-point correlation
function of the spatial point process and show that the observed power-laws do
not disappear even when we change the physical representation from geographical
space to cartogram space. Our work suggests that the effect of physical
location poses a challenge to ongoing efforts to develop realistic models of
scientific productivity. We propose that the introduction of a fine scale
geography may lead to more sophisticated indicators of scientific output.Comment: 6 pages, 3 figures; minor change
Runaway Events Dominate the Heavy Tail of Citation Distributions
Statistical distributions with heavy tails are ubiquitous in natural and
social phenomena. Since the entries in heavy tail have disproportional
significance, the knowledge of its exact shape is very important. Citations of
scientific papers form one of the best-known heavy tail distributions. Even in
this case there is a considerable debate whether citation distribution follows
the log-normal or power-law fit. The goal of our study is to solve this debate
by measuring citation distribution for a very large and homogeneous data. We
measured citation distribution for 418,438 Physics papers published in
1980-1989 and cited by 2008. While the log-normal fit deviates too strong from
the data, the discrete power-law function with the exponent does
better and fits 99.955% of the data. However, the extreme tail of the
distribution deviates upward even from the power-law fit and exhibits a
dramatic "runaway" behavior. The onset of the runaway regime is revealed
macroscopically as the paper garners 1000-1500 citations, however the
microscopic measurements of autocorrelation in citation rates are able to
predict this behavior in advance.Comment: 6 pages, 5 Figure
Emergence d’une spécialité scientifique dans l’espace - La réparation de l’ADN
International audienceIn the study of science, the specialty is seen as the ideal level of analysis to understand the genesis and development of scientific communities. This article uses bibliometric data to analyze the emergence of DNA repair by testing a hybrid method to identify the specialty’s appearance in geographical space by focusing on the geographical trajectories of the pioneers in this field. We try to identify the professional mobility of researchers using these bibliometric data, and if possible to highlight the structural networks of places during the emergence stage of the specialty. These networks determine places as much as they are built by individual trajectories. In this way, we try to make a place for the geography of science in the field of social studies of science.Dans l’étude des sciences, la spécialité est perçue comme le niveau d’analyse idéal pour comprendre la genèse et le développement des collectifs scientifiques. Cet article utilise des données bibliométriques pour analyser l’émergence de la Réparation de l’ADN en expérimentant une méthode mixte pour repérer son apparition dans l’espace géographique. En nous concentrant sur les trajectoires géographiques de pionniers dans cedomaine, nous tâchons de repérer leur mobilité professionnelle à l’aide de données bibliométriques dans la perspective de mettre en évidence les réseaux de lieux structurants dans la phase d’émergence de la spécialité. Ces réseaux de lieux déterminent autant qu’ils sont construits par les trajectoires individuelles. Nous essayons ainsi de faire une place à la géographie des sciences dans le domaine des études sociales des sciences
Consensuality of Peer Nominations Among Scientists
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69069/2/10.1177_107554708200400210.pd
Characterizing Interdisciplinarity of Researchers and Research Topics Using Web Search Engines
Researchers' networks have been subject to active modeling and analysis.
Earlier literature mostly focused on citation or co-authorship networks
reconstructed from annotated scientific publication databases, which have
several limitations. Recently, general-purpose web search engines have also
been utilized to collect information about social networks. Here we
reconstructed, using web search engines, a network representing the relatedness
of researchers to their peers as well as to various research topics.
Relatedness between researchers and research topics was characterized by
visibility boost-increase of a researcher's visibility by focusing on a
particular topic. It was observed that researchers who had high visibility
boosts by the same research topic tended to be close to each other in their
network. We calculated correlations between visibility boosts by research
topics and researchers' interdisciplinarity at individual level (diversity of
topics related to the researcher) and at social level (his/her centrality in
the researchers' network). We found that visibility boosts by certain research
topics were positively correlated with researchers' individual-level
interdisciplinarity despite their negative correlations with the general
popularity of researchers. It was also found that visibility boosts by
network-related topics had positive correlations with researchers' social-level
interdisciplinarity. Research topics' correlations with researchers'
individual- and social-level interdisciplinarities were found to be nearly
independent from each other. These findings suggest that the notion of
"interdisciplinarity" of a researcher should be understood as a
multi-dimensional concept that should be evaluated using multiple assessment
means.Comment: 20 pages, 7 figures. Accepted for publication in PLoS On
Inheritance patterns in citation networks reveal scientific memes
Memes are the cultural equivalent of genes that spread across human culture
by means of imitation. What makes a meme and what distinguishes it from other
forms of information, however, is still poorly understood. Our analysis of
memes in the scientific literature reveals that they are governed by a
surprisingly simple relationship between frequency of occurrence and the degree
to which they propagate along the citation graph. We propose a simple
formalization of this pattern and we validate it with data from close to 50
million publication records from the Web of Science, PubMed Central, and the
American Physical Society. Evaluations relying on human annotators, citation
network randomizations, and comparisons with several alternative approaches
confirm that our formula is accurate and effective, without a dependence on
linguistic or ontological knowledge and without the application of arbitrary
thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical
Review
Indicators for the Data Usage Index (DUI): an incentive for publishing primary biodiversity data through global information infrastructure
<p>Abstract</p> <p>Background</p> <p>A professional recognition mechanism is required to encourage expedited publishing of an adequate volume of 'fit-for-use' biodiversity data. As a component of such a recognition mechanism, we propose the development of the Data Usage Index (DUI) to demonstrate to data publishers that their efforts of creating biodiversity datasets have impact by being accessed and used by a wide spectrum of user communities.</p> <p>Discussion</p> <p>We propose and give examples of a range of 14 absolute and normalized biodiversity dataset usage indicators for the development of a DUI based on search events and dataset download instances. The DUI is proposed to include relative as well as species profile weighted comparative indicators.</p> <p>Conclusions</p> <p>We believe that in addition to the recognition to the data publisher and all players involved in the data life cycle, a DUI will also provide much needed yet novel insight into how users use primary biodiversity data. A DUI consisting of a range of usage indicators obtained from the GBIF network and other relevant access points is within reach. The usage of biodiversity datasets leads to the development of a family of indicators in line with well known citation-based measurements of recognition.</p
- …