11 research outputs found

    Trait correlates of distribution trends in the Odonata of Britain and Ireland

    Get PDF
    A major challenge in ecology is understanding why certain species persist, while others decline, in response to environmental change. Trait-based comparative analyses are useful in this regard as they can help identify the key drivers of decline, and highlight traits that promote resistance to change. Despite their popularity trait-based comparative analyses tend to focus on explaining variation in range shift and extinction risk, seldom being applied to actual measures of species decline. Furthermore they have tended to be taxonomically restricted to birds, mammals, plants and butterflies. Here we utilise a novel approach to estimate occurrence trends for the Odonata in Britain and Ireland, and examine trait correlates of these trends using a recently available trait dataset. We found the dragonfly fauna in Britain and Ireland has undergone considerable change between 1980 and 2012, with 22 and 53% of species declining and increasing, respectively. Distribution region, habitat specialism and range size were the key traits associated with these trends, where habitat generalists that occupy southern Britain tend to have increased in comparison to the declining narrow-ranged specialist species. In combination with previous evidence, we conclude that the lower trend estimates for the narrow-ranged specialists could be a sign of biotic homogenization with ecological specialists being replaced by warm-adapted generalists

    High Abundances of Species in Protected Areas in Parts of their Geographic Distributions Colonized during a Recent Period of Climatic Change

    Get PDF
    It is uncertain whether Protected Areas (PAs) will conserve high abundances of species as their distributions and abundances shift in response to climate change. We analyzed large datasets for 57 butterfly and 42 odonate species (including four that have recently colonized Britain). We found that 73 of 94 species with sufficient data for analysis were more abundant inside than outside PAs in the historical parts of their British distributions, showing that PAs have retained high conservation value. A significant majority (61 of 99 species) was also more abundant inside PAs in regions they have colonized during the last 30–40 years of climate warming. Species with relatively high abundances inside PAs in long-established parts of their distributions were also disproportionately associated with PAs in recently colonized regions, revealing a set of relatively PA-reliant species. Pas, therefore, play a vital role in the conservation of biodiversity as species’ ranges become more dynamic

    Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly

    Get PDF
    Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i) Is the population structure affected by longitudinal or latitudinal gradients?; (ii) Do geographic boundaries limit gene flow?; (iii) Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv) Is there evidence of a recent range expansion and (vi) what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean FST = 0.06, Dest = 0.12), and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies) were found. FST-and Dest-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats

    Sustainable grazing practices on the South West moors of England (includes site reports annex)

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:3775.10607(254) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore