9 research outputs found

    Integrating organizational, social, and individual perspectives in Web 2.0-based workplace e-learning

    Get PDF
    From the issue entitled 'Special Issue: Emerging Social and Legal Aspect'E-learning is emerging as a popular approach of education in the workplace by virtue of its flexibility to access, just-in-time delivery, and cost-effectiveness. To improve social interaction and knowledge sharing in e-learning, Web 2.0 is increasingly utilized and integrated with e-learning applications. However, existing social learning systems fail to align learning with organizational goals and individual needs in a systemic way. The dominance of technology-oriented approaches makes elearning applications less goal-effective and poor in quality and design. To solve the problem, we address the requirement of integrating organizational, social, and individual perspectives in the development of Web 2.0 elearning systems. To fulfill the requirement, a key performance indicator (KPI)-oriented approach is presented in this study. By integrating a KPI model with Web 2.0 technologies, our approach is able to: 1) set up organizational goals and link the goals with expertise required for individuals; 2) build a knowledge network by linking learning resources to a set of competences to be developed and a group of people who learn and contribute to the knowledge network through knowledge creation, sharing, and peer evaluation; and 3) improve social networking and knowledge sharing by identifying each individual's work context, expertise, learning need, performance, and contribution. The mechanism of the approach is explored and elaborated with conceptual frameworks and implementation technologies. A prototype system for Web 2.0 e-learning has been developed to demonstrate the effectiveness of the approach. © Springer Science + Business Media, LLC 2009.postprin

    Effect of Microwave Pretreatment on Extraction Yield and Quality of Catfish Oil in Northern Thailand

    No full text
    The effect of microwave pretreatment of catfish processing waste on oil recovery and quality was investigated. Fish oil was extracted using the enzymatic hydrolysis using alcalase enzyme after the microwave pretreatment. The effect of microwave power and microwave pretreatment times was evaluated. The results revealed that a highest yield of 9.25% when catfish waste was treated at 110 W for 60 s. This condition was found as the most appropriate condition of microwave pretreatment since it decreased the extraction time from 150 min to up to 30 min. Analysis of oil quality indices (e.g. acid value, p-anisidine value, peroxide value) extracted by microwave pretreatment and non-pretreatment indicated that catfish oil from both processes has comparatively similar fatty acids composition. In addition, catfish oil was extracted by microwave pretreatment and enzymatic hydrolysis had lower lipid oxidation compared to several standards

    Protein and amino acid solubilization using bacillus cereus, bacillus velesensis, and chryseobacterium sp. from chemical extraction protein residue

    No full text
    The exploitation of natural resources and increased environmental pollution have stressed the need for more valued use of residues generated by the fish processing plants, and species with low commercial value. Protein hydrolysis processes—whether chemical or enzymatic—generate insoluble proteins from bones, scales, and skin, which are not recovered and are often used as animal feed or disposed off into the environment. As an alternative, insoluble proteins could be converted in useful biomass protein concentrates or amino acids, by using microbial proteases. This work examines the solubilization of insoluble proteins discarded in the process of pH change in fish residues from Whitemouth croaker (Micropogonias furnieri), through the use of bacterial proteases. Temperature and pH conditions in the fermentations were adjusted for each microorganism and time was set at 96 h. Two substrates (acid and alkaline), three microorganism strains, and the substrate concentration used were examined. Among the three strains, Bacillus velesensis reached the higher proteolytic activity (47.56 U mL−1), followed by Chryseobacterium sp. with 23.46 U mL−1. Bacillus cereus (3.13 U mL−1) showed low proteolytic activity. B. velesensis was the bacterium that presented better results with the analyzed substrates, achieving larger amount of soluble protein and free amino acids. The findings showed that these bacteria could be used to solubilize proteins from fish byproducts, which may be particularly useful to increase the yield of hydrolysis process or food formulations
    corecore