188 research outputs found
Tomography by noise
We present an efficient and robust method for the reconstruction of photon
number distributions by using solely thermal noise as a probe. The method uses
a minimal number of pre-calibrated quantum devices, only one on/off
single-photon detector is sufficient. Feasibility of the method is demonstrated
by the experimental inference of single-photon, thermal and two-photon states.
The method is stable to experimental imperfections and provides a direct,
user-friendly quantum diagnostics tool
Two-Photon Polarization Interference for Pulsed SPDC in a PPKTP Waveguide
We study the spectral properties of Spontaneous Parametric Down Conversion in
a periodically poled waveguided structure of KTP crystal pumped by ultra-short
pulses. Our theoretical analysis reveals a strongly multimode and asymmetric
structure of the two-photon spectral amplitude for type-II SPDC. Experimental
evidence, based on Hong-Ou-Mandel polarization interference with narrowband
filtering, confirms this result.Comment: Submitted for publicatio
Passive decoy state quantum key distribution: Closing the gap to perfect sources
We propose a quantum key distribution scheme which closely matches the
performance of a perfect single photon source. It nearly attains the physical
upper bound in terms of key generation rate and maximally achievable distance.
Our scheme relies on a practical setup based on a parametric downconversion
source and present-day, non-ideal photon-number detection. Arbitrary
experimental imperfections which lead to bit errors are included. We select
decoy states by classical post-processing. This allows to improve the effective
signal statistics and achievable distance.Comment: 4 pages, 3 figures. State preparation correcte
Equivalent efficiency of a simulated photon-number detector
Homodyne detection is considered as a way to improve the efficiency of
communication near the single-photon level. The current lack of commercially
available {\it infrared} photon-number detectors significantly reduces the
mutual information accessible in such a communication channel. We consider
simulating direct detection via homodyne detection. We find that our particular
simulated direct detection strategy could provide limited improvement in the
classical information transfer. However, we argue that homodyne detectors (and
a polynomial number of linear optical elements) cannot simulate photocounters
arbitrarily well, since otherwise the exponential gap between quantum and
classical computers would vanish.Comment: 4 pages, 4 figure
Efficient algorithm for optimizing data pattern tomography
We give a detailed account of an efficient search algorithm for the data
pattern tomography proposed by J. Rehacek, D. Mogilevtsev, and Z. Hradil [Phys.
Rev. Lett.~\textbf{105}, 010402 (2010)], where the quantum state of a system is
reconstructed without a priori knowledge about the measuring setup. The method
is especially suited for experiments involving complex detectors, which are
difficult to calibrate and characterize. We illustrate the approach with the
case study of the homodyne detection of a nonclassical photon state.Comment: 5 pages, 5 eps-color figure
Avalanche Photo-Detection for High Data Rate Applications
Avalanche photo detection is commonly used in applications which require
single photon sensitivity. We examine the limits of using avalanche photo
diodes (APD) for characterising photon statistics at high data rates. To
identify the regime of linear APD operation we employ a ps-pulsed diode laser
with variable repetition rates between 0.5MHz and 80MHz. We modify the mean
optical power of the coherent pulses by applying different levels of
well-calibrated attenuation. The linearity at high repetition rates is limited
by the APD dead time and a non-linear response arises at higher photon-numbers
due to multiphoton events. Assuming Poissonian input light statistics we
ascertain the effective mean photon-number of the incident light with high
accuracy. Time multiplexed detectors (TMD) allow to accomplish photon- number
resolution by photon chopping. This detection setup extends the linear response
function to higher photon-numbers and statistical methods may be used to
compensate for non-linearity. We investigated this effect, compare it to the
single APD case and show the validity of the convolution treatment in the TMD
data analysis.Comment: 16 pages, 5 figure
Quantum key distribution using gaussian-modulated coherent states
Quantum continuous variables are being explored as an alternative means to
implement quantum key distribution, which is usually based on single photon
counting. The former approach is potentially advantageous because it should
enable higher key distribution rates. Here we propose and experimentally
demonstrate a quantum key distribution protocol based on the transmission of
gaussian-modulated coherent states (consisting of laser pulses containing a few
hundred photons) and shot-noise-limited homodyne detection; squeezed or
entangled beams are not required. Complete secret key extraction is achieved
using a reverse reconciliation technique followed by privacy amplification. The
reverse reconciliation technique is in principle secure for any value of the
line transmission, against gaussian individual attacks based on entanglement
and quantum memories. Our table-top experiment yields a net key transmission
rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per
second for a line with losses of 3.1 dB. We anticipate that the scheme should
remain effective for lines with higher losses, particularly because the present
limitations are essentially technical, so that significant margin for
improvement is available on both the hardware and software.Comment: 8 pages, 4 figure
Quantum state and mode profile tomography by the overlap
VS acknowledge support from the National Council for Scientific and Technological Development (CNPq) of Brazil, grant 304129/2015-1, and by the São Paulo Research Foundation (FAPESP), grant 2015/23296-8. DM acknowledge support from the EUproject Horizon-2020 SUPERTWIN id.686731, the National Academy of Sciences of Belarus program ‘Convergence’ and FAPESP grant 2014/21188-0. NK acknowledges the support from the Scottish Universities Physics Alliance (SUPA) and from the International Max Planck Partnership (IMPP) with Scottish Universities. JT and CS acknowledge support from European Union Grant No. 665148 (QCUMbER). TB acknowledges support from theDFG under TRR 142.Any measurement scheme involving interference of quantum states of the electromagnetic field necessarily mixes information about the spatiotemporal structure of these fields and quantum states in the recorded data. Weshow that in this case, a trade-off is possible between extracting information about the quantum states and the structure of the underlying fields, with the modal overlap being either a goal or a convenient tool of the reconstruction. Weshow that varying quantum states in a controlled way allows one to infer temporal profiles of modes. Vice versa, for the known quantum state of the probe and controlled variable overlap, one can infer the quantum state of the signal. We demonstrate this trade-off. by performing an experiment using the simplest on-off detection in an unbalanced weak homodyning scheme. For the single-mode case, we demonstrate experimentally inference of the overlap and a few-photon signal state. Moreover, we show theoretically that the same single-detector scheme is sufficient even for arbitrary multi-mode fields.Publisher PDFPeer reviewe
Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state
We present a protocol for performing entanglement swapping with intense
pulsed beams. In a first step, the generation of amplitude correlations between
two systems that have never interacted directly is demonstrated. This is
verified in direct detection with electronic modulation of the detected
photocurrents. The measured correlations are better than expected from a
classical reconstruction scheme. In the entanglement swapping process, a
four--partite entangled state is generated. We prove experimentally that the
amplitudes of the four optical modes are quantum correlated 3 dB below shot
noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor
inconsistency in notation removed; format for units in the figures change
Extracting the physical sector of quantum states
The physical nature of any quantum source guarantees the existence of an effective Hilbert space of finite dimension, the physical sector, in which its state is completely characterized with arbitrarily high accuracy. The extraction of this sector is essential for state tomography. We show that the physical sector of a state, defined in some pre-chosen basis, can be systematically retrieved with a procedure using only data collected from a set of commuting quantum measurement outcomes, with no other assumptions about the source. We demonstrate the versatility and efficiency of the physical-sector extraction by applying it to simulated and experimental data for quantum light sources, as well as quantum systems of finite dimensions
- …
