35 research outputs found

    Periodic One-Dimensional Hopping Model with one Mobile Directional Impurity

    Full text link
    Analytic solution is given in the steady state limit for the system of Master equations describing a random walk on one-dimensional periodic lattices with arbitrary hopping rates containing one mobile, directional impurity (defect bond). Due to the defect, translational invariance is broken, even if all other rates are identical. The structure of Master equations lead naturally to the introduction of a new entity, associated with the walker-impurity pair which we call the quasi-walker. The velocities and diffusion constants for both the random walker and impurity are given, being simply related to that of the quasi-particle through physically meaningful equations. Applications in driven diffusive systems are shown, and connections with the Duke-Rubinstein reptation models for gel electrophoresis are discussed.Comment: 31 LaTex pages, 5 Postscript figures included, to appear in Journal of Statistical Physic

    Spin Glass and Antiferromagnetic Behaviour in a Diluted fcc Antiferromagnet

    Full text link
    We report on a Monte Carlo study of a diluted Ising antiferromagnet on a fcc lattice. This is a typical model example of a highly frustrated antiferromagnet, and we ask, whether sufficient random dilution of spins does produce a spin glass phase. Our data strongly indicate the existence of a spin glass transition for spin--concentration p<0.75p<0.75: We find a divergent spin glass susceptibility and a divergent spin glass correlation length, whereas the antiferromagnetic correlation length saturates in this regime. Furthermore, we find a first order phase transition to an antiferromagnet for 1≥p>0.851\ge p>0.85, which becomes continuous in the range 0.85>p>0.750.85>p>0.75. Finite size scaling is employed to obtain critical exponents. We compare our results with experimental systems as diluted frustrated antiferromagnets as Zn1−pMnpTe{\rm Zn_{1-p}Mn_{p}Te}.Comment: 29 pages (revtex) and 10 figures uuencoded and Z-compresse

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit
    corecore