
Altrad and Muhaidat EURASIP Journal onWireless Communications and
Networking 2013, 2013:159
http://jwcn.eurasipjournals.com/content/2013/1/159

RESEARCH Open Access

A newmathematical analysis of the probability
of detection in cognitive radio over fading
channels
Omar Altrad1* and Sami Muhaidat2,3

Abstract

Cognitive radio (CR) enriches wireless technology systems by harnessing spectrum white spaces. Such systems
require continuous and reliable sensing to provide high-quality service to their users and to minimize the interference
they may cause to legacy networks. As the simplicity of implementation of energy detectors and their incoherent
requirements make them an ideal candidate for this type of application, this work provides a further mathematical
analysis to the probability of detection over different fading channels. We derive a tight closed-form expression for the
probability of detection over Nakagami channels. In addition, we introduce an accurate recursive algorithm to
compute the probability of detection for an odd degree of freedom over additive white Gaussian noise channels,
which has been overlooked in the literature so far. Finally, we present the simulation results which concur with the
numerical results and which are also a perfect match with the mathematical expressions derived.

Keywords: Cognitive radio, Nakagami-m fading, Odd degrees of freedom, Probability of detection, Probability of
false alarm

1 Introduction
The rapid increase of wireless systems and applications
raises spectrum demand. However, not all bands of the
spectrum are fully utilized at specific times or at spe-
cific geographic locations. The Federal Communication
Commission (FCC) reported that some of these bands
(e.g., unlicensed bands at 2.4 and 5 Ghz) are overcrowded,
while others (e.g., licensed bands such as the ultra-high
frequency (UHF) band) are inefficiently used. Therefore,
technology is emerging to reduce the spectrum scarcity
issue by fully utilizing the unused portion of the spectrum.
For example, IEEE 802.22 [1] proposes reusing the tele-
vision (TV) UHF band without causing any interference
to TV receivers. Another considers a cellular communi-
cation system that utilizes the wireless local area network
system (cf. [2]). Researchers often refer to this technology
as cognitive radio (CR) systems.
As the main objective of CR systems is the spectrum

efficient utilization, an accurate design for a cognitive
radio network (CRN) working under a licensed primary
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network (PN) needs to be considered.While the CRNmay
have its own frequency band of operation, it can also uti-
lize the white spaces or spectrum holes in frequency bands
of the PN to increase its performance and to provide a
higher quality of service to its users. As a result, it is con-
sidered to be a secondary network relative to the primary
network. One of the major challenge of CRN is spectrum
sensing, i.e., a highly reliable sensing function must be
implemented in the CRN’s terminals. This arises from the
fact that the CR receiver sensitivity must be as high as pos-
sible to detect the presence or absence of a primary user
(PU) signal and to invoke other functions in the CR device
which also depend mainly on sensing functionality. For
example, in order to detect a primary signal, the CR sys-
tem must have a sensitivity as much as 20 to 30 dB higher
than that of the primary system [3]. Therefore, the core
of CR systems is the spectrum sensing algorithm which
determines the validity of a transmission opportunity.
In this paper, our study is limited to the energy sensing

method [4-7]. In particular, for a local spectrum sensing
scenario, i.e., the sensing is accomplished by a single
cognitive radio. This detection method can be applied
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to any signal type with fewer computational require-
ments and a simpler implementation. Although several
research papers have investigated the detection process
using energy detector over a variety of fading chan-
nels (cf. [8-13]), the expressions derived for the prob-
ability of detection and the probability of false alarms
were mainly evaluated for even degrees of freedom (e.g.,
[14, Eq. 10]). Therefore, we provide an algorithm to com-
pute the detection probability in the case of odd degrees
of freedom based on the suboptimal energy detector.
Moreover, as spectrum sensing must detect a very low
signal-to-noise ratio (SNR), which in turn requires a high
degree of precision, the previously derived expressions
mainly depend on the number of terms in the sum-
mation to get highly accurate results. In addition, they
are numerically difficult and depend on other functions
while their implementation is also susceptible to trun-
cation errors. Therefore, closed-form expressions for the
detection probability are derived. We summarize our
contributions as follows:

• We provide a highly accurate recursive algorithm to
compute the probability of detection for odd degrees
of freedom. It should be noted that the mathematical
derivation shows the steps of the algorithm when
evaluating the detection probability in case of odd
degrees of freedom, i.e., it is an algorithm rather than
a mathematical derivation. An example of the
algorithm importance is the Marcum function in
Matlab which accepts only integer values in its third
argument. Therefore, when the number of degrees of
freedom is odd, the third argument is no longer
accepted and the Marcum function cannot be used to
evaluate the detection probability in this case.
However, our algorithm solves this problem.

• We derive a closed-form expression over a Nakagami-
m fading channel. Here, we use closed form in the
sense that no summation and no integration are
required. The accuracy of the closed form is very
close to the previously reported expressions in which
summation and integration are used to get highly
accurate results. Our new expressions show how the
ratio of the Nakagami parameter m and the average
signal-to-noise ratio which affects the receiver
operation characteristics (ROC) curves.

• We compare the derived expressions to the reported
expressions in [14,15] in which summation and
integration are used. We also compare our derived
expressions to other recently reported expressions,
e.g., [16,17], and we show that our new derived
expressions can be used with no limitations.
Moreover, the derived expressions are more accurate
than the recently reported ones with less or almost
the same computational complexity.

We also compare our simulation results with the analyt-
ical evaluation of the derived expressions.
The rest of the paper is organized as follows. In

Section 2, the energy detector, system model, and the
derivation of the recursive algorithm are introduced.
We derive closed-form expressions for Nakagami chan-
nels in Section 3. Simulation and numerical results are
introduced in Section 4, and we conclude our paper in
Section 5.

2 Energy sensingmodel
The sensing process consists of two stages and is con-
trolled by signals from the upper layers to sense a specific
bandwidth B, as shown in Figure 1. In the first stage,
the received signal x(t) is filtered to the bandwidth of
interest B to reject band noise and adjacent signals. It is
then amplified using a low noise amplifier and is down-
converted to an intermediate frequency. In the second
stage, the received signal is sampled and quantized using
an A/D converter. Next, a square-law device and an inte-
grator with sensing interval T measures the received
signal energy. Finally, the output of the integrator, rep-
resented by the test statistic Y, is compared to a prede-
termined threshold λ to determine the existence (H1) or
absence (H0) of a PU.
The existence or absence of a PU signal can be modeled

as a binary hypotheses problem as originally proposed
by [18,19] and later followed by most researchers [20,21].
Thismodel differentiates between two hypotheses defined
as:

x[ n]=
{

w[ n], H0

hs[ n]+w[ n], H1
, n = 1, 2, · · ·N , (1)

where s[ n] is the primary user signal component which is
assumed to be an unknown deterministic signal, and w[ n]
is the noise component which is assumed to be an addi-
tive white Gaussian noise (AWGN) with zero mean and
variance σ 2. h is the channel coefficient which is assumed
to be constant during the period of observation, i.e., for
N samples, H0 is the hypothesis test when noise only is
present andH1 is the hypothesis test when both noise and
signal are present. We also assume that the noise samples
are independent and identically distributed, and they are
independent of the signal samples. The suboptimal energy
detector is defined as:

Y =
∑
N

|x[ n]|2 (2)

Then, the distribution of the decision variable Y will
be central chi-square χ2

N under H0 and noncentral chi-
square χ̃2

N with N degrees of freedom under H1. Notice
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Figure 1 Schematic of sensing abstraction including an energy detector.

that to reduce the overuse of notations, we distinguish
between central and noncentral chi-square by the sym-
bol (∼). Thus, using this notation, the distribution can be
expressed as [22]:

Y ∼
{

χ2
N ,H0

χ̃2
N ,H1,

and its probability density function can be written as:

fY (y)=

⎧⎪⎪⎨
⎪⎪⎩

1
σN2

N
2 �
( N
2
)y( N2 )−1 exp

( −y
2σ 2

)
,H0

1
2σ 2

(
y
ζ

)(N−2)/4
exp

[ −1
2σ 2 (y + ζ )

]
× I N

2 −1

(√
ζy

σ 2

)
,H1

(3)

where the noncentrality parameter ζ =
N∑
i=1

μ2
i , and μi is

the mean of the ith Gaussian random variable of test Y.
Ir(.) is the rth-modified Bessel function of the first kind,
which has a series representation [23]:

Ir (u) =
∞∑
k=0

( 1
2u
)2k+r

k!� (r + k + 1)
(4)

Evaluating test Y by the decision device, which is shown
in Figure 1, may result in two types of errors. We define
the notation P(Hi,Hj) to distinguish between these errors.
When the decision device decides H1 but H0 is true,
denoted as P(H1;H0), this is called the probability of
a false alarm (Pfa). When the device decides P(H0,H1),
this represents the probability of misdetection (Pmd). The
complementary to Pmd is the probability of detection

(Pd = 1 − Pmd = P(H1;H1)). The performance of the
energy detector can be characterized by the probability
of detection in a low SNR regime. An alternative per-
formance metric is the ROC curves which are generated
by plotting Pmd vs Pfa. Following the shorthand notation
mentioned previously, the probability of detection and
probability of a false alarm can be computed as:

Pd =P (H1;H1) = P (y > λ;H1)

=
∫ ∞

λ

fY (y)dy, H1 (5)

Pfa = P (H1;H0) = P (y > λ;H0)

=
∫ ∞

λ

fY (y)dy, H0 (6)

2.1 Probability of detection and false alarm under AWGN
channels

To derive the probability of false alarm using the right-
tail probability of the central chi-squared density function
Qχ2

N
, we define γ as γ = h2ζ

σ 2 .a Substituting t = y/σ 2 and
further integrating the probability density function in (3)
under H0 results in:

Pfa =
∞∫

λ/σ 2

1
2

N
2 �
(N
2
) t(N2 )−1 exp

(−t
2

)
dt λ/σ 2 ≥ 0.

= Qχ2
N

(
λ/σ 2) (7)

where Qχ2
N
can be written as ([24], Eq 26.4.4, Eq 26.4.5):
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Qχ2
N
(λ/σ 2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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2Q
(√

λ/σ 2
)

N= 1

2Q
(√

λ/σ 2
)

+ exp
(
− λ

2σ2

)
√

π

N−1
2∑

k=1

(k−1)!(2λ/σ 2)
k− 1

2

(2k−1)! Nodd

exp
(
− λ

2σ 2

) (N2 )−1∑
k=0

(
λ

2σ2

)k
k! N even

(8)

where Q(.) is the complementary cumulative distribution

function defined as Q(x) =
∞∫
x

1√
2π exp

(− 1
2 t

2).
The same approach can be used to derive the probability
of detection using the right tail of the noncentral chi-
squared probability density function under H1. By letting
t = y/σ 2, the probability of detection is given by:

Pd = Qχ̃2
N(γ )

(
λ/σ 2)

=
∞∫

λ/σ 2

[
1
2

(
t
γ

) N−2
4

exp
[
1
2

(t + γ )

]
× I N

2 −1

(√
γ t
)
dt
]

(9)

We can rewrite (9) using ([25], Eq 2.45) for an even
number of degrees of freedom as:

Pd = QN/2
(√

γ ,
√

λ′
)

(10)

where λ′ = λ/σ 2, and Qm(., .) is the mth generalized
Marcum Q function which is given by:

Qm (α,β) = 1
αm−1

∞∫
β

xme−
(
x2+α2

2

)
Im−1 (αx)dx (11)

which is the same result as in [5].
For an odd number of degrees of freedom (10) cannot be

directly evaluated. Therefore, we introduce an algorithm
to solve this problem. To do so, we use the series expan-
sion of the modified Bessel function defined in (4) and
rewrite (9) as:

Qχ̃2
N(γ )

(
λ/σ 2) =

∞∑
k=0

exp (−γ /2) (γ /2)k

k!

×
∞∫

λ′

(
t
N
2 +k−1 exp

(− t
2
)

2
N
2 +k�

(N
2 + k

)
)
dt

=
∞∑
k=0

exp (−γ /2) (γ /2)k

k!
Qχ2

N+2k

(
λ′)︸ ︷︷ ︸

second term
(12)

The second term of (12) represents the right-tail prob-
ability of a central chi-square with l = N + 2k degrees
of freedom. As a result, for N odd, l = N + 2k is also
odd. Thus, (12) can be rewritten using (8) for the odd case
which results in (13), where Gχ2

l−2
(λ′) is given by:

Qχ̃2
N(γ )

(
λ′) =

∞∑
k=0
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exp (−γ /2) (γ /2)k

k!

×
[
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l−2
(λ′) + g(λ′, l)

]
(13)

Gχ2
l−2

(λ′) = exp
(− 1
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′)

√
π

l−3
2∑
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(
j − 1
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and g(λ′, l) can be rewritten as:
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g(λ′, l) = exp
(− 1

2λ
′)

√
π

⎛
⎝
(
l−1
2 − 1

)
!

2
(
l−1
2 − 1

)
!

(
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2 − 1
2

⎞
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= exp(λ′/2)√
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(
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)

× 2λ′ ((l − 3)/2)
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(15) can also be reduced to

g(λ′, l) = g(λ′, l − 2)
λ′

l − 2
(16)

where the initialization starts with Gχ2
l−2

(λ′) = g(λ′, 3) =√
2λ′
π

exp(−λ′/2).

3 Probability of detection and false alarms under
Nakagami fading channels

To capture all different types of fading, the parameters of
the Nakagami distribution can be adjusted to fit a vari-
ety of fading processes. If we define γ̄ = E[ h2] ζ/σ 2 as
the average signal-to-noise ratio, where E(.) denotes the
expectation operator, then the probability distribution of
γ will be given as:

PNak(γ ) =
(
m
γ̄

)m
γm−1

� (m)
exp

[
−mγ

γ̄

]
(17)

To compute the probability of detection, this must be
averaged over the probability density function of the
instantaneous value of γ , i.e., it can be written as:

PdNak =
∞∫
0

QN/2
(√

γ ,
√

λ′
)
f (γ ) dγ (18)

Then, substituting (17) into (18) results in:

PdNak =
∞∫
0

(
m
γ̄

)m
γm−1

� (m)
exp

(
−mγ

γ̄

)
QN/2

(√
γ ,

√
λ′
)
dγ

= 2
� (m)

(
m
γ̄

)m ∞∫
0

x2m−1 exp
(
−η2x2

2

)
QN/2

(
x,

√
λ′
)
dx

= α

∞∫
0

x2m−1 exp
(

−η2x2

2

)
QN/2

(
x,

√
λ′
)
dx

(19)

where in the second step, we substitute x = √
γ and

η2 = 2m
γ̄
, and in the last step, we substitute 2

�(m)

(
m
γ̄

)m
with α. Different combinations of m and N/2 lead to dif-
ferent results for the integration defined in the last step.
In the following, the probability of detection is evaluated
over both Rayleigh and Nakagami fading channels.

3.1 Special case: Rayleigh fading
In the case of Raleigh fading, we set m = 1 and use ([25],
Eq B.53). Then the probability of detection can be written
as:

PdRay = exp
(

−λ′

2

)[ [
1 + η2

]u−1

×
{
exp

(
λ′

2 + 2η2

)
−

u−2∑
k=0

1
k!

(
λ′

2 + 2η2

)k
}

+
u−2∑
k=0

1
k!

(
λ′

2

)k
]

(20)

where u = N/2.

3.2 Nakagami fading
In the case of Nakagami fading, we further simplify the
expression in (19) using the series representation of the
Marcum Q function [26], which is given by:

Qu
(√

γ ,
√

λ′
)

= 1 −
∑
n≥0

[
(−1)n exp

(γ

2

)

× Lu−1
n

( γ
2
)

� (u + n + 1)

(
λ′

2

)n+u
]

(21)

where Lkj is the generalized Laguerre polynomial of degree
j and order k. The absolute convergence of the series in
(21) has been shown to be absolutely bounded by:

∑
n≥0

[
(−1)n exp

(γ

2

) Lu−1
n

( γ
2
)

� (u + n + 1)

(
λ′

2

)n+u
]

≤ exp (−γ /4)
1

�(u)

(
λ′

2

)u−1 (
exp

(
λ′

2

)
− 1

)
(22)
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PdNak = α

∞∫
0
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x2m−1 exp

(−η2x2/2
) [

1 − exp
(−x2/4

) 1
�(u)

(
λ′/2

)u−1 (exp (λ′/2
)− 1

)]}
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=

⎡
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α
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x2m−1 exp
(−η2x2/2

)
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first term

− α
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)u−1 exp
(
λ′/2
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x2m−1 exp
(−η2x2/2

)
exp

(−x2/4
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second term

+ α
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(
λ′/2
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0

x2m−1 exp
(−η2x2/2

)
exp

(−x2/4
)
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Third term

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Then, substituting (22) into (19) results in (23). Next, by
changing the variableM = 2m−1, and further integrating,
the first term of (23) can be reduced to:

α

∞∫
0

x2m−1 exp
(−η2x2/2

)
dx

= α
� ((M + 1)/2)

2
(

η2

2

)(M+1)/2 = 1 (24)

The second term of (23) can be further reduced to:

α

�(u)

(
λ′/2

)u−1 exp
(
λ′/2
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0

xM exp
(−((η2/2) + 1/4)x2

)
dx

= exp
(
λ′/2

) (
λ′/2

)u−1

� (u)

(
m
γ̄

)m
(
m
γ̄

+ 1/4
)m ,

(25)

while the third term can be reduced as:

α

�(u)

(
λ′/2

)u−1
∞∫
0

xM exp
(−((η2/2) + 1/4)x2

)
dx

= 1
�(u)

(
λ′/2

)u−1

(
m
γ̄

)m
(
m
γ̄

+ 1/4
)m (26)

Then, the probability of detection under a Nakagami
fading channel is the result of (24), (25), and (26) which
can be written as:

PdNak = 1 − 1
�(u)

(
λ′/2

)u−1

(
m
γ̄

)m
(
m
γ̄

+ 1/4
)m [exp (λ′/2

)− 1
]

(27)

It is clear from (27) how changing various parameters
affect the detection process. The new derived expression

reveals the fact that the ratio of parameterm to parameter
γ̄ is an important consideration when evaluating the prob-
ability of detection over Nakagami fading channels. For
example, at low γ̄ < 2 dB and when the degree of freedom
u is fixed, the Nakagami parameter m has only a minor
effect on the detection process. That means no matter
how much m increases, the probability of detection stays
almost the same. However, at high γ̄ > 15 dB, increasing
m will greatly improve the probability of detection. This
will be discussed further in the simulation section.
Another expression for the probability of detection over

Nakagmai fading channels can easily be derived by rewrit-
ing the right-hand side of (21) as:

Qu
(√

γ ,
√

λ′
)

= 1 −
∑
n≥0

exp (−γ /2)
(γ

2

)n (γ ∗(u + n, λ′/2)
n!�(u + n)

)

(28)

where we use the notation γ ∗(., .) to represent the lower
incomplete gamma function. Equation (28) is the well-
known canonical representation of the uth order gener-
alized Marcum Q function. Then, with the help of (18)

and using
∞∑
k=0

(a/2)k/k! = exp(a/2) and after simple

mathematical manipulation as shown in (24-26), the prob-
ability of detection over Nakagami fading channels can be
approximated as:

PdNak
∼= 1 − β

(
γ ∗(λ′/2,u)

� (u)

)
(29)

where β = [2m/ (2m + γ̄ )].

4 Simulation and numerical results
A binary phase shift keying signalb with sampling fre-
quency fs = 10fc, where fc is the carrier frequency, is
used to investigate the detection probability for even/odd
degrees of freedom. For the even degree of freedom with
N arbitrarily chosen to be (10,20), the simulation results
are compared to (10). As shown in Figure 2, it can be seen
that increasing N or the SNR enhances the probability of
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Figure 2 Probability of detection vs SNR for BPSK signal.With fs = 10fc , Pfa = 0.01, and different even numbers of degrees of freedom; the
simulation is compared to (10) in an AWGN channel.

detection. Therefore, this result is consistent with most of
the reported results in the literature. We also notice that
the simulation results coincide with the theoretical ones.
Figure 3 shows the detection probability using the recur-

sive algorithm for odd/even degrees of freedom with
N = 31, 32 for comparison. As shown, the recursive algo-
rithm perfectly matches the simulation results. Moreover,
the accuracy of the recursive algorithm goes up to 15
decimal places, which is the maximum number of dig-
its that Matlab can support. Although there is a small
effect on the detection probability when we compare
the even/odd cases, in practice and since most cur-
rent functions deals only with even degree of freedom,

this algorithm becomes more beneficial. For example,
when evaluating the detection probability using the Mar-
cum function in Matlab with N = 31 (odd), the third
argument of the Marcum function will be 15.5; hence,
the implemented Marcum function in Matlab cannot
be used to evaluate the detection probability in this
case as it accepts only integer numbers. However, our
algorithm does.
To evaluate the closed-form expressions derived for

Nakagami channels, an extensive simulation has been
performed using the ROC. The derived expressions are
evaluated and compared with the numerical integration of
(18) and with the expressions reported by [14-17].c

0
−20 −15 −10 −5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ (dB)

P d

 

 

Simulation for N=31
Recursive for N=31
Simulation for N=32
Equation [10] for N=32

Figure 3 Probability of detection vs SNR for BPSK signal.With fs = 10fc , Pfa = 0.01, and different odd withN = 31, even withN = 32
number of degrees of freedom. In the odd case, the simulation is compared to the recursive formula (13,16) in AWGC, and in the even case, the
simulation is compared to (10) in AWGC and to ([14], Eq. 14).
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4.1 Comparison of the derived expressions with
Equation 18

In Figure 4, we compare the derived expressions in (27)
and (29) with the numerical integration of (18) for dif-
ferent values of γ̄ and m. Figure 4 also shows the effect
of varying the Nakagami parameter m on the misdetec-
tion probability at low and high values of γ̄ which will be
discussed in the following subsections.

4.1.1 Low value of γ̄
At a low value of γ̄ , i.e., γ̄ = −10 dB, it can be seen that
increasing the value of m, (m = 1, 2, 3), does not improve
the misdetection probability for both derived expressions
which concurs with the numerical integration of (18). We
also note that (29) exactly matches (18); on the other hand,
there is a minor discrepancy between (27) and (18).

4.1.2 High value of γ̄
At a high value of γ̄ , i.e., γ̄ = 10 dB, increasing m will
greatly improve the misdetection probability for both
derived expressions (27 and 29), which also concurs
with the numerical integration of (18) as can be seen in
Figure 4. Further, we notice that at a very low false alarm
probability, (29) is less accurate compared to (27). How-
ever, as the false alarm probability increases, the results for
both expressions match that of the numerical integration
of (18).

4.2 Comparison of the derived expressions with related
works

In this subsection, we compare the new derived expres-
sions with the previously reported expressions for high
and low values of γ̄ andm = 1, 2, 3.

4.2.1 Low value of γ̄
In Figure 5, the new derived expressions are compared
with the expressions of ([14], Eq. 20), ([15], Eq. 12),

([16], Eq. 13), and ([17], Eq. 13). It can be seen that at
a very low false alarm probability, the results of the new
derived expressions in (27) and (29) and all expressions
in the previously mentioned references are a good match.
As the probability of false alarm increases, however, a dis-
crepancy arises between ([16], Eq. 13) and ([17], Eq. 13)
when compared to the new expressions and/or the work
of [14,15]. Moreover, as previously shown in Figure 4, at
low γ̄ , increasing m did not enhance the probability of
misdetection. This behavior can be seen from (27) and
(29) which also concurs with the work of ([14], Eq. 20)
and ([15], Eq. 12). However, the result of ([16], Eq. 13) has
some discrepancies when the false alarm probability or
the value ofm increases. Moreover, the result of ([17], Eq.
13) is not consistent with increasing m. For example, the
result at the value ofm = 3 is worse than the result at the
value of m = 1, 2 as can be seen in Figure 5. We note also
that the probability of misdetection approaches zero at the
point of (1 − Pfa) for the expressions reported by [16,17].

4.2.2 High value of γ̄
Figure 6 shows the simulation results for all expressions
when evaluated at a high value of γ̄ . The result of (27) is
very close to that of ([14], Eq. 20) and of ([15] for the values
of m = 2, 3. Moreover, although there are some discrep-
ancies when evaluating (29) as compared to ([14], Eq. 20)
and ([15], Eq. 12), at a high value of a false alarm proba-
bility, the expression (29) is a perfect match. To this end,
we conclude that (29) works well at high values of γ̄ and
when Pfa > 0.2. Moreover, (29) is accurate at low γ̄ for all
values of false alarm probability. On the other hand, the
expressions ([16], Eq. 13) and ([17], Eq. 13) are less accu-
rate for all evaluated points of false alarm probability and
the unpredictable behavior of these expressions still exists
as discussed in the low value of γ̄ case. Moreover, results
from the expression ([17], Eq. 13) are also inconsistent as
the value ofm is increased.d

Figure 4 Comparison between the derived expressions, (27) and (29), and numerical integration of (18) for different values of γ̄ andm.
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Figure 5 Comparison of the new derived expressions. Comparison of the new derived expressions (27) and (29), with the work of ([14], Eq. 20),
([15], Eq. 12), ([16], Eq. 13), and ([17], Eq. 13) with γ̄ = −2 dB, u = 5, and different values ofm.

4.3 Computational complexity
In the previous subsections, we discussed the accuracy
of the derived expressions and compared them to the
expressions in ([14], Eq. 20) and ([15], Eq. 12) that require
summation and integration terms to get the needed accu-
racy. The derived expressions were also compared to the
expressions of ([16], Eq. 13) and ([17], Eq. 13) that depend
on evaluating the gamma function as does the derived
expression in (29). To complete the picture, we need
another performance metric that distinguishes between
these expressions. To do so, a simple Matlab code was
written to measure the computation time required of a
central processing unit (CPU) to evaluate a point in the
ROC domain. We ran the code on a computer equipped
with a CPU with a speed of 3.07 GHz on which we cleared
all background application processes that might run on

the system.e We used 21 points of false alarm probability,
i.e., (Pfa = 0 : 0.05 : 1) with a step of 0.05. At each point,
the code iterated 1,000 times and averaged afterward. The
measured computation time of the CPU for all points used
and for each expression is plotted in Figure 7. It can be
seen that more computation time is required to get highly
accurate results. This is evident from the evaluated points
of the expressions ([14], Eq. 20) and ([15], Eq. 12) as they
have the highest computation time.f On the other hand,
the derived expression in (27) and the reported expression
in ([17], Eq. 13) have almost the same computation time.
Moreover, the expression of ([16], Eq. 13) has the lowest
computation timewhile the expression of ([14], Eq. 20) has
the highest.
The derived expressions can also be compared in

terms of the number of multiplications. For example,
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Figure 6 Simulation results for all expressions when evaluated at a high value of γ̄ . Comparison of the new derived expressions, (27) and
(29), with the work of ([14], Eq. 20), ([15], Eq. 12), ([16], Eq. 13), and ([17], Eq. 13) with γ̄ = 20 dB, u = 5, andm = 2, 3.
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Figure 7 Comparison of the computation time, all expressions computed at γ̄ = 20 dB and u = 5.

the derived expression in ([14], Eq. 20) is based on
the summation of confluent hypergeometric functions,
and such functions have a computational complex-
ity of order O

[
log2 (n) M̄ (n)

]
for n-digit precision

[27], where n means computing n digits, and M̄(n)

is the bit complexity of multiplication. However, the
reported expression of ([15],12) is based on an infi-
nite series of gamma functions, and such functions
have a computational complexity of O

[√
nM̄ (n)

]
. Using

this notation, the derived expressions of (27) and (29)
have a computational complexity of O(M̄(n)). Since
O
[
log2 (n) M̄ (n)

]
> O

[√
nM̄ (n)

]
> O(M̄(n)), which is

also consistent with the simulation results of Figure 7,
therefore, the derived expressions have a lower com-
plexity than ([14], Eq. 20) and ([15], Eq. 12) and have
the same computational complexity as ([16], Eq. 13) and
([17], Eq. 13).

5 Conclusions
Spectrum sensing using energy detectors under differ-
ent fading channels was investigated. We derived tight
closed-form expressions for the probability of detection in
Nakagami channels. The closed-form expressions can eas-
ily be used for Rayleigh fading channels by settingm = 1.
The results of the closed-form formula as compared with
other expressions based on summation and integration
terms are very close. Furthermore, the derived expression
of (27) can be used for all γ̄ ; however, there is a minor
limitation of using (29) specifically at high values of γ̄ .
Moreover, the derived expressions have a lower compu-
tational complexity compared to other expressions with
only a very small loss of accuracy. In addition, we intro-
duced an accurate recursive algorithm to compute the

probability of detection for an odd number of degrees of
freedom under AWGN channels. Our simulation shows
that the detection process for a binary phase shift keying
signal using the recursive formula perfectly coincides with
the recursive algorithm.

Endnotes
a In AWGN channels, there is no fading, i.e., h2 = 1.
b Different modulation schemes could be used in the

simulation since the derived expression is independent of
the modulation used.

c For comparison purposes, we have used a value of
n = 1 in the expression of [17], Eq. 13), where n
represents the number of nodes cooperating in the
sensing process according to [17] notations.

d ‘Equation (29) comes from another way of calculating
the probability of detection over Nakagami fading
channels in order to compare with results from the state
of the art, which seemed rather optimistic for low false
alarm probability, and that for high SNR cases,’ one of the
anonymous reviewer’s comment.

e The conducted simulations show that the computed
time will only be scaled by a constant factor and that the
calculated computation time will not be affected if we do
or do not clear the processor cache of any background
application processes.

f The number of terms used to calculate the
summation of [15], Eq. 12) was 20.
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