312 research outputs found
Spin and chiral orderings of frustrated quantum spin chains
Ordering of frustrated S=1/2 and 1 XY and Heisenberg spin chains with the
competing nearest- and next-nearest-neighbor antiferromagnetic couplings is
studied by exact diagonalization and density-matrix renormalization-group
methods. It is found that the S=1 XY chain exhibits both gapless and gapped
`chiral' phases characterized by the spontaneous breaking of parity, in which
the long-range order parameter is a chirality, , whereas the spin correlation decays either
algebraically or exponentially. Such chiral phases are not realized in the
S=1/2 XY chain nor in the Heisenberg chains.Comment: 4 pages, 5 EPS-figures, LaTeX(RevTeX),to appear in J.Phys.Soc.Japa
Semi-classical description of the frustrated antiferromagnetic chain
The antiferromagnetic Heisenberg model on a chain with nearest and next
nearest neighbor couplings is mapped onto the nonlinear sigma model in
the continuum limit. In one spatial dimension this model is always in its
disordered phase and a gap opens to excited states. The latter form a doubly
degenerate spin-1 branch at all orders in . We argue that this feature
should be present in the spin-1 Heisenberg model itself. Exact diagonalizations
are used to support this claim. The inapplicability of this model to
half-integer spin chains is discussed.Comment: 19 pages (RevTeX 3.0), 6 PostScript figures appended (printing
instructions included), preprint CRPS-94-1
Effects of Arousal on Mouse Sensory Cortex Depend on Modality
Changes in arousal modulate the activity of mouse
sensory cortex, but studies in different mice and
different sensory areas disagree on whether this
modulation enhances or suppresses activity. We
measured this modulation simultaneously in multiple
cortical areas by imaging mice expressing voltagesensitive fluorescent proteins (VSFP). VSFP imaging
estimates local membrane potential across large
portions of cortex. We used temporal filters to predict local potential from running speed or from pupil
dilation, two measures of arousal. The filters provided good fits and revealed that the effects of
arousal depend on modality. In the primary visual
cortex (V1) and auditory cortex (Au), arousal caused
depolarization followed by hyperpolarization. In the
barrel cortex (S1b) and a secondary visual area
(LM), it caused only hyperpolarization. In all areas,
nonetheless, arousal reduced the phasic responses
to trains of sensory stimuli. These results demonstrate diverse effects of arousal across sensory cortex but similar effects on sensory responses
Integrins as therapeutic targets: lessons and opportunities.
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47(−/−) Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47(−/−) Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn(2+) or Mg(2+)/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration
State-dependent modulation of slow wave motifs towards awakening
Slow cortical waves that propagate across the cerebral cortex forming large-scale spatiotemporal propagation patterns are a hallmark of non-REM sleep and anesthesia, but also occur during resting wakefulness. To investigate how the spatial temporal properties of slow waves change with the depth of anesthetic, we optically imaged population voltage transients generated by mouse layer 2/3 pyramidal neurons across one or two cortical hemispheres dorsally with a genetically encoded voltage indicator (GEVI). From deep barbiturate anesthesia to light barbiturate sedation, depolarizing wave events recruiting at least 50% of the imaged cortical area consistently appeared as a conserved repertoire of distinct wave motifs. Toward awakening, the incidence of individual motifs changed systematically (the motif propagating from visual to motor areas increased while that from somatosensory to visual areas decreased) and both local and global cortical dynamics accelerated. These findings highlight that functional endogenous interactions between distant cortical areas are not only constrained by anatomical connectivity, but can also be modulated by the brain state
The impact of bilateral ongoing activity on evoked responses in mouse cortex
In the absence of external stimuli or overt behavior, the activity of the left and right cortical hemispheres shows fluctuations that are largely bilateral. Here we show that these fluctuations are largely responsible for the variability observed in cortical responses to sensory stimuli. Using widefield imaging of voltage and calcium signals, we measured activity in the cortex of mice performing a visual detection task. Bilateral fluctuations invested all areas, particularly those closest to the midline. Activity was less bilateral in the monocular region of primary visual cortex and, especially during task engagement, in secondary motor cortex. Ongoing bilateral fluctuations dominated unilateral visual responses, and interacted additively with them, explaining much of the variance in trial-by-trial activity. Even though these fluctuations occurred in regions necessary for the task, they did not affect detection behavior. We conclude that bilateral ongoing activity continues during visual stimulation and has a powerful additive impact on visual responses
MicroRNA Profiles in Intestinal Epithelial Cells in a Mouse Model of Sepsis
Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively targe
Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse [version 1]
Background: Mutations of the common cytokine receptor gamma chain (γc) cause Severe Combined Immunodeficiency characterized by absent T and NK cell development. Although stem cell therapy restores these lineages, residual immune defects are observed that may result from selective persistence of γc-deficiency in myeloid lineages. However, little is known about the contribution of myeloid-expressed γc to protective immune responses. Here we examine the importance of γc for myeloid dendritic cell (DC) function. Methods: We utilize a combination of in vitro DC/T-cell co-culture assays and a novel lipid bilayer system mimicking the T cell surface to delineate the role of DC-expressed γc during DC/T-cell interaction. Results: We observed that γc in DC was recruited to the contact interface following MHCII ligation, and promoted IL-15Rα colocalization with engaged MHCII. Unexpectedly, trans-presentation of IL-15 was required for optimal CD4+T cell activation by DC and depended on DC γc expression. Neither recruitment of IL-15Rα nor IL-15 trans-signaling at the DC immune synapse (IS), required γc signaling in DC, suggesting that γc facilitates IL-15 transpresentation through induced intermolecular cis associations or cytoskeletal reorganization following MHCII ligation. Conclusions: These findings show that DC-expressed γc is required for effective antigen-induced CD4+ T cell activation. We reveal a novel mechanism for recruitment of DC IL-15/IL-15Rα complexes to the IS, leading to CD4+ T cell costimulation through localized IL-15 transpresentation that is coordinated with antigen-recognition
- …
