14,087 research outputs found

    Kaon and pion parton distribution amplitudes to twist-three

    Full text link
    We compute all kaon and pion parton distribution amplitudes (PDAs) to twist-three and find that only the pseudotensor PDA can reasonably be approximated by its conformal limit expression. At terrestrially accessible energy scales, the twist-two and pseudoscalar twist-three PDAs differ significantly from those functions commonly associated with their forms in QCD's conformal limit. In all amplitudes studied, SU(3) flavour-symmetry breaking is typically a 13% effect. This scale is determined by nonperturbative dynamics; namely, the current-quark-mass dependence of dynamical chiral symmetry breaking. The heavier-quark is favoured by this distortion, for example, support is shifted to the s-quark in the negative kaon. It appears, therefore, that at energy scales accessible with existing and foreseeable facilities, one may obtain reliable expectations for experimental outcomes by using these "strongly dressed" PDAs in formulae for hard exclusive processes. Following this procedure, any discrepancies between experiment and theory will be significantly smaller than those produced by using the conformal-limit PDAs. Moreover, the magnitude of any disagreement will either be a better estimate of higher-order, higher-twist effects or provide more realistic constraints on the Standard Model.Comment: 14 pages, 4 figures, 2 tables. arXiv admin note: text overlap with arXiv:1406.335

    Flavour symmetry breaking in the kaon parton distribution amplitude

    Get PDF
    We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincare'-covariant Bethe-Salpeter wave-function onto the light-front. At a scale \zeta=2GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12-16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on the difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/Fπ=1.23F_K/F_\pi=1.23 at spacelike-Q2=17 GeV2Q^2=17\,{\rm GeV}^2, which compares satisfactorily with the value of 0.92(5)0.92(5) inferred in e+e−e^+ e^- annihilation at s=17 GeV2s=17\,{\rm GeV}^2.Comment: 7 pages, 2 figures, 3 table

    Robust Preparation of GHZ and W States of Three Distant Atoms

    Full text link
    Schemes to generate Greenberger-Horne-Zeilinger(GHZ) and W states of three distant atoms are proposed in this paper. The schemes use the effects of quantum statistics of indistinguishable photons emitted by the atoms inside optical cavities. The advantages of the schemes are their robustness against detection inefficiency and asynchronous emission of the photons. Moreover, in Lamb-Dicke limit, the schemes do not require simultaneous click of the detectors, this makes the schemes more realizable in experiments.Comment: 5 pages, 1 fiure. Phys. Rev. A 75, 044301 (2007

    Geometric Photon-Drag Effect and Nonlinear Shift Current in Centrosymmetric Crystals

    Get PDF
    The nonlinear shift current, also known as the bulk photovoltaic current generated by linearly polarized light, has long been known to be absent in crystals with inversion symmetry. Here we argue that a nonzero shift current in centrosymmetric crystals can be activated by a photon-drag effect. Photon-drag shift current proceeds from a "shift current dipole" (a geometric quantity characterizing interband transitions) and manifests a purely transverse response in centrosymmetric crystals. This transverse nature proceeds directly from the shift-vector's pseudovector nature under mirror operation and underscores its intrinsic geometric origin. Photon-drag shift current can be greatly enhanced by coupling to polaritons and provides a new and sensitive tool to interrogate the subtle interband coherences of materials with inversion symmetry previously thought to be inaccessible via photocurrent probes

    Decays of the Meson BcB_c to a PP-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays, Bc⟶χc(hc)+ℓ+νℓB_{c}{\longrightarrow}{\chi_c}(h_c)+{\ell}+{{\nu}}_{\ell}, and the two-body nonleptonic decays, Bc⟶χc(hc)+hB_{c}{\longrightarrow}{\chi_c}(h_c)+h, (here χc\chi_c and hch_c denote (ccˉ[3PJ])(c\bar c[^3P_J]) and (ccˉ[1P1])(c\bar c[^1P_1]) respectively, and hh indicates a meson) were computed. All of the form factors appearing in the relevant weak-current matrix elements with BcB_c as its initial state and a PP-wave charmonium state as its final state for the decays were precisely formulated in terms of two independent overlapping-integrations of the wave-functions of BcB_c and the PP-wave charmonium and with proper kinematics factors being `accompanied'. We found that the decays are quite sizable, so they may be accessible in Run-II at Tevatron and in the foreseen future at LHC, particularly, when BTeV and LHCB, the special detectors for B-physics, are borne in mind. In addition, we also pointed out that the decays Bc→hc+...B_c\to h_c+... may potentially be used as a fresh window to look for the hch_c charmonium state, and the cascade decays, Bc→χc[3P1,2]+l+νlB_c\to \chi_c[^3P_{1,2}]+l+\nu_l (Bc→χc[3P1,2]+hB_c\to \chi_c[^3P_{1,2}]+h) with one of the radiative decays χc[3P1,2]→J/ψ+γ\chi_c[^3P_{1,2}] \to J/\psi+\gamma being followed accordingly, may affect the observations of BcB_c meson through the decays Bc→J/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} (Bc→J/ψ+hB_c\to J/\psi+h) substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation and adding reference

    The Narrow Θ5\Theta_5 Pentaquark As The First Non-planar Hadron With the Diamond Structure And Negative Parity

    Full text link
    Using the picture of the flux tube model, we propose that the Θ5\Theta_5 pentaquark as the first candidate of the three-dimensional non-planar hadron with the extremely stable diamond structure. The up and down quarks lie at the corners of the diamond while the anti-strange quark sits in the center. Various un-excited color flux tubes between the five quarks bind them into a stable and narrow color-singlet. Such a configuration allows the lowest state having the negative parity naturally. The decay of the Θ5\Theta_5 pentaquark into the nucleon and kaon requires the breakup of the non-planar diamond configuration into two conventional planar hadrons, which involves some kind of structural phase transition as in the condensed matter physics. Hence the width of the Θ+\Theta^+ pentaquark should be narrow despite that it lies above the kaon nucleon threshold. We suggest that future lattice QCD calculation adopt non-planar interpolating currents to explore the underlying structure of the Θ5\Theta_5 pentaquark
    • …
    corecore