211 research outputs found

    Entangled light from Bose-Einstein condensates

    Full text link
    We propose a method to generate entangled light with a Bose-Einstein condensate trapped in a cavity, a system realized in recent experiments. The atoms of the condensate are trapped in a periodic potential generated by a cavity mode. The condensate is continuously pumped by a laser and spontaneously emits a pair of photons of different frequencies in two distinct cavity modes. In this way, the condensate mediates entanglement between two cavity modes which leak out and can be separated and exhibit continuous variable entanglement. The scheme exploits the experimentally demonstrated strong, steady and collective coupling of condensate atoms to a cavity field.Comment: 5 pages and 5 figure

    Manipulation and Detection of a Trapped Yb+ Ion Hyperfine Qubit

    Full text link
    We demonstrate the use of trapped ytterbium ions as quantum bits for quantum information processing. We implement fast, efficient state preparation and state detection of the first-order magnetic field-insensitive hyperfine levels of 171Yb+, with a measured coherence time of 2.5 seconds. The high efficiency and high fidelity of these operations is accomplished through the stabilization and frequency modulation of relevant laser sources.Comment: 10 pages, 9 figures, 1 tabl

    Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method

    Full text link
    Quantum information protocols utilizing atomic ensembles require preparation of a coherent spin state (CSS) of the ensemble as an important starting point. We investigate the magneto-optical resonance method for characterizing a spin state of cesium atoms in a paraffin coated vapor cell. Atoms in a constant magnetic field are subject to an off-resonant laser beam and an RF magnetic field. The spectrum of the Zeeman sub-levels, in particular the weak quadratic Zeeman effect, enables us to measure the spin orientation, the number of atoms, and the transverse spin coherence time. Notably the use of 894nm pumping light on the D1-line, ensuring the state F=4, m_F=4 to be a dark state, helps us to achieve spin orientation of better than 98%. Hence we can establish a CSS with high accuracy which is critical for the analysis of the entangled states of atoms.Comment: 12 pages ReVTeX, 6 figures, in v2 added ref. and corrected typo

    Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks

    Get PDF
    We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.Comment: 10 pages, 7 figures. Text revised, additional information included in Appendix. Published online in Science Express, 5 April, 200

    Optical Properties of Collective Excitations for Finite Chains of Trapped Atoms

    Full text link
    Resonant dipole-dipole interaction modifies the energy and decay rate of electronic excitations for finite one dimensional chains of ultracold atoms in an optical lattice. We show that collective excited states of the atomic chain can be divided into dark and bright modes, where a superradiant mode with an enhanced collective effective dipole dominates the optical scattering. Studying the generic case of two chain segments of different length and position exhibits an interaction blockade and spatially structured light emission. Ultimately, an extended system of several interfering segments models a long chain with randomly distributed defects of vacant sites. The corresponding emission pattern provides a sensitive tool to study structural and dynamical properties of the system.Comment: 8 pages, 12 figure

    Quantum memory for entangled two-mode squeezed states

    Full text link
    A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page

    Quantum teleportation between light and matter

    Full text link
    Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature - light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10^12 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58+-0.02 for n=20 and 0.60+-0.02 for n=5 - higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.Comment: 23 pages, 8 figures, incl. supplementary informatio
    • …
    corecore