935 research outputs found

    Generating the Baryon Asymmetry of the Universe in Split Fermion Models

    Full text link
    The origin of the matter-antimatter asymmetry of the universe is one of the major unsolved problems in cosmology and particle physics. In this paper, we investigate the recently proposed possibility that split fermion models -- extra dimensional models where the standard model fermions are localized to different points around the extra dimension -- could provide a means to generate this asymmetry during the phase transition of the localizing scalars. After setting up the scenario that we consider, we use a single fermion toy model to estimate the reflection coefficients for scattering off the phase boundary using a more realistic scalar profile than previous work resulting in a different Kaluza Klein spectrum. The value we calculate for nB/sn_B/s is consistent with the mechanism being the source of the baryon asymmetry of our universe provided the BLB-L violating processes have an efficiency of order 10510^{-5}.Comment: 17 pages, 3 figures; References added; Minor changes, Accepted for publication in Phys. Rev.

    Searching for dark matter sterile neutrino in laboratory

    Full text link
    If the dark matter of the Universe is made of sterile neutrinos with the mass in keV region they can be searched for with the help of X-ray satellites. We discuss the prospects of laboratory experiments that can be competitive and complimentary to Space missions. We argue that the detailed study of beta decays of tritium and other nuclei with the help of Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) can potentially enter into interesting parameter range and even supersede the current astronomical bounds on the properties of dark matter sterile neutrino.Comment: RevTex, 6 pages, 1 figure. Journal version accepted in Phys.Rev.

    Sterile neutrinos in cosmology and how to find them in the lab

    Get PDF
    A number of observed phenomena in high energy physics and cosmology lack their resolution within the Standard Model of particle physics. These puzzles include neutrino oscillations, baryon asymmetry of the universe and existence of dark matter. We discuss the suggestion that all these problems can be solved by new physics which exists only below the electroweak scale. The dedicated experiments that can confirm or rule out this possibility are discussed.Comment: Invited talk at XXIII Int. Conf. on Neutrino Physics and Astrophysics, May 25-31, Christchurch, New Zealan

    On initial conditions for the Hot Big Bang

    Get PDF
    We analyse the process of reheating the Universe in the electroweak theory where the Higgs field plays a role of the inflaton. We estimate the maximal temperature of the Universe and fix the initial conditions for radiation-dominated phase of the Universe expansion in the framework of the Standard Model (SM) and of the nuMSM -- the minimal extension of the SM by three right-handed singlet fermions. We show that the inflationary epoch is followed by a matter dominated stage related to the Higgs field oscillations. We investigate the energy transfer from Higgs-inflaton to the SM particles and show that the radiation dominated phase of the Universe expansion starts at temperature T_r~(3-15)*10^{13} GeV, where the upper bound depends on the Higgs boson mass. We estimate the production rate of singlet fermions at preheating and find that their concentrations at T_r are negligibly small. This suggests that the sterile neutrino Dark Matter (DM) production and baryogenesis in the nuMSM with Higgs-driven inflation are low energy phenomena, having nothing to do with inflation. We study then a modification of the nuMSM, adding to its Lagrangian higher dimensional operators suppressed by the Planck scale. The role of these operators in Higgs-driven inflation is clarified. We find that these operators do not contribute to the production of Warm Dark Matter (WDM) and to baryogenesis. We also demonstrate that the sterile neutrino with mass exceeding 100 keV (a Cold Dark Matter (CDM) candidate) can be created during the reheating stage of the Universe in necessary amounts. We argue that the mass of DM sterile neutrino should not exceed few MeV in order not to overclose the Universe.Comment: 41 pages, 5 figures. Journal version accepted in JCA

    On the nature of the flux variability during an expansion stage of a type I X-ray burst: Constraints on Neutron Star Parameters for 4U 1820-30

    Full text link
    Powerful Type I X-ray burst with strong radial expansion was observed from the low mass X-ray binary 4U 1820-30 with Rossi X-ray Timing Explorer on May 2, 1997. We investigate closely the flux profile during the burst expansion stage. Applying a semi-analytical model we are able to uncover the behavior of a photospheric radius and to simulate the evolution of neutron star (NS)-accretion disk system. The bottom flux L_{bot} is a few times the Eddington limit L_{Edd} for outer layers, because the electron cross-section is a few times less than the Thomson cross-section at such a high temperatures. The surplus of energy flux with respect to the Eddington, LbotLEddL_{bot}-L_{Edd}, goes into the potential energy of the expanded envelope. As cooling of the burning zone starts the surplus decreases and thus the envelope shrinks while the emergent photon flux stays the same L=LEddL=L_{Edd}. At a certain moment the NS low-hemisphere, previously screened by the disk, becomes visible to the observer. Consequently, the flux detected by the observer increases. Indeed, we observe to the paradoxical situation when the burning zone cools, but the apparent flux increases because of the NS-accretion disk geometry. We demonstrate a strong observational evidence of NS-accretion disk occultation in the behavior of the observed bolometric flux. We estimate the anisotropy due to geometry and find that the system should have a high inclination angle. Finally, we apply an analytical model of X-ray spectral formation in the neutron star atmosphere during burst decay stage to infer the neutron star (NS) mass-radius relation.Comment: 15 pages, 3 figures, accepted to ApJ

    Late Reheating, Hadronic Jets and Baryogenesis

    Get PDF
    If inflaton couples very weakly to ordinary matter the reheating temperature of the universe can be lower than the electroweak scale. In this letter we show that the late reheating occurs in a highly non-uniform way, within narrow areas along the jets produced by ordinary particles originated from inflaton decays. Depending on inflaton mass and decay constant, the initial temperature inside the lumps of the overheated plasma may be large enough to trigger the unsuppressed sphaleron processes with baryon number non-conservation, allowing for efficient local electroweak baryogenesis.Comment: 4 pages, 2 figures, revtex

    Electroweak phase transition in the MSSM with four generations

    Full text link
    By assuming the existence of the sequential fourth generation to the minimal supersymmetric standard model (MSSM), we study the possibility of a strongly first-order electroweak phase transition. We find that there is a parameter region of the MSSM where the electroweak phase transition is strongly first order. In that parameter region, the mass of the lighter scalar Higgs boson is calculated to be above the experimental lower bound, and the scalar quarks of the third and the fourth generations are heavier than the corresponding quarks.Comment: 12 pages, 2 tables, 2 figure

    Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym

    Full text link
    We present a formalism that allows the computation of the baryon asymmetry of the universe from first principles of statistical physics and quantum field theory that is applicable to certain types of beyond the Standard Model physics (such as the neutrino Minimal Standard Model -- ν\nuMSM) and does not require the solution of Boltzmann or Kadanoff-Baym equations. The formalism works if a thermal bath of Standard Model particles is very weakly coupled to a new sector (sterile neutrinos in the ν\nuMSM case) that is out-of-equilibrium. The key point that allows a computation without kinetic equations is that the number of sterile neutrinos produced during the relevant cosmological period remains small. In such a case, it is possible to expand the formal solution of the von Neumann equation perturbatively and obtain a master formula for the lepton asymmetry expressed in terms of non-equilibrium Wightman functions. The master formula neatly separates CP-violating contributions from finite temperature correlation functions and satisfies all three Sakharov conditions. These correlation functions can then be evaluated perturbatively; the validity of the perturbative expansion depends on the parameters of the model considered. Here we choose a toy model (containing only two active and two sterile neutrinos) to illustrate the use of the formalism, but it could be applied to other models.Comment: 26 pages, 10 figure

    Electroweak bubbles and sphalerons

    Full text link
    We consider non-perturbative solutions of the Weinberg-Salam model at finite temperature. We employ an effective temperature-dependent potential yielding a first order phase transition. In the region of the phase transition, there exist two kinds of static, spherically symmetric solutions: sphalerons and bubbles. We analyze these solutions as functions of temperature. We consider the most general spherically symmetric fluctuations about the two solutions and construct the discrete modes in the region of the phase transition. Sphalerons and bubbles both possess a single unstable mode. We present simple approximation formulae for these levels.Comment: 14 pages, plain tex, 9 figures appended as postscript files at the end of the paper. THU-93/0

    Electroweak baryogenesis induced by a scalar field

    Get PDF
    A cosmological pseudoscalar field coupled to hypercharge topological number density can exponentially amplify hyperelectric and hypermagnetic fields while coherently rolling or oscillating, leading to the formation of a time-dependent condensate of topological number density. The topological condensate can be converted, under certain conditions, into baryons in sufficient quantity to explain the observed baryon asymmetry in the universe. The amplified hypermagnetic field can perhaps sufficiently strengthen the electroweak phase transition, and by doing so, save any pre-existing baryon number asymmetry from extinction.Comment: 8 pages, 4 figure
    corecore