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Abstract: We analyse the process of reheating the Universe in the electroweak theory

where the Higgs field plays a role of the inflaton. We estimate the maximal temperature of

the Universe and fix the initial conditions for radiation-dominated phase of the Universe

expansion in the framework of the Standard Model (SM) and of the νMSM — the minimal

extension of the SM by three right-handed singlet fermions. We show that the inflationary

epoch is followed by a matter dominated stage related to the Higgs field oscillations. We

investigate the energy transfer from Higgs-inflaton to the SM particles and show that the

radiation dominated phase of the Universe expansion starts at temperature Tr ≃ (3−15)×
1013 GeV, where the upper bound depends on the Higgs boson mass. We estimate the

production rate of singlet fermions at preheating and find that their concentrations at Tr
are negligibly small. This suggests that the sterile neutrino Dark Matter (DM) production

and baryogenesis in the νMSM with Higgs-driven inflation are low energy phenomena,

having nothing to do with inflation. We study then a modification of the νMSM, adding

to its Lagrangian higher dimensional operators suppressed by the Planck scale. The role of

these operators in Higgs-driven inflation is clarified. We find that these operators do not

contribute to the production of Warm Dark Matter (WDM) and to baryogenesis. We also

demonstrate that the sterile neutrino with mass exceeding 100 keV (a Cold Dark Matter

(CDM) candidate) can be created during the reheating stage of the Universe in necessary

amounts. We argue that the mass of DM sterile neutrino should not exceed few MeV in

order not to overclose the Universe.
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1. Introduction

The statement that the Universe was dense and hot in the past is an established exper-

imental fact. It follows from existence of the Cosmic Microwave Background radiation

(CMB), which has a perfect Planck spectrum, and from accordance of predictions of the

Big Bang Nucleosynthesis (BBN) with observations. The latter tells that the Universe

had the temperature of at least few MeV. Whether the Universe was even hotter is an

open question, which hardly can be answered by experimental means and thus is biased

by theoretical prejudice.

According to the current theory of inflation (for a recent review see [1]) the early evo-

lution of the Universe can be roughly divided into three parts. During the first, inflationary

stage, the Universe expands exponentially and becomes nearly flat. At this stage relic grav-

ity waves and matter perturbations, leading to structure formation, are generated. During

the second, reheating stage, the energy stored in the inflaton field is transferred to the

fields of the Standard Model and other (hypothetical) particles (if they exist). The third

stage is the radiation dominated Universe in nearly thermal equilibrium for most of the

SM particles. The starting moment of this stage tr corresponds to a maximal temperature

of the Universe Tmax, and this is the onset of the standard Hot Big Bang.

The system in thermal equilibrium is completely characterised by temperature T and

chemical potentials µi for exactly conserved quantum numbers Qi; the corresponding op-

erators Q̂i obey [Q̂i, Ĥ] = 0, where Ĥ is the Hamiltonian of the system. For the expanding

Universe the precise thermal equilibrium never exists. To describe the state of the Universe

at T ∼ Tmax the set of operators Q̂i should be supplemented by approximately conserved

operators Q̂A, whose rate of change is much smaller than the rate of the Universe ex-

pansion. Thus, to follow the Universe evolution at later times, t > tr, one can use the

ordinary kinetic approach based on Boltzmann equations (or equations for density matrix,

if coherent quantum effects are essential) with initial density matrix

ρ0 ∝ exp

(

− Ĥ
Tmax

−
∑

i

µi
Tmax

Q̂i −
∑

A

µA
Tmax

Q̂A

)

. (1.1)

The magnitude of the maximal temperature Tmax together with the set of values of the

chemical potentials µi, µA can be called the initial conditions for the Hot Big Bang. If they

are known, the further evolution can be completely specified by the standard methods of

kinetic theory.

Clearly, to find the initial conditions for the Big Bang one has to know what are the

relevant particle degrees of freedom at T < Tmax (in particular, if any new particles beyond

those already present in the SM exist), or, in other words, what is the Hamiltonian Ĥ. The

knowledge of the Hamiltonian would allow to determine the set of conserved Q̂i or nearly

conserved Q̂A operators and identify the relevant chemical potentials. Now, to determine

Tmax and µi,A the interaction of the inflaton with the fields in Ĥ must be known, and the

physics of reheating must be elucidated.

Basically, to find the initial conditions for the Big Bang one should have at hand the

theory which is valid up to the scale of inflation. There are quite a number of proposals

for these types of theories, based on different ideas about physics beyond the SM. These

ideas include low energy supersymmetry and Grand Unification, small, large or infinite

extra dimensions (see e.g. [2] and [3] for reviews) and many others. Clearly, any model of
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physics beyond the SM, must be able to explain the observed phenomena that cannot be

addressed by the SM physics. They include neutrino masses and oscillations, the existence

of dark matter in the Universe, baryon asymmetry, inflation, and accelerated expansion of

the Universe at present.1

The most economical particle physics model which is capable of solving in a unified

way all these problems of the SM is the νMSM (Neutrino Minimal Standard Model) of

[4, 5]. This theory is nothing but the SM augmented by three relatively light (lighter

than Z boson) right-handed singlet fermions. If the dilaton field is added to the νMSM,

the theory can be made scale-invariant at the quantum level by a specific renormalization

procedure [6, 7]. The spontaneous breaking of the scale invariance leads then to generation

of all mass parameters, including the Newton’s gravity constant. Higgs mass is stable

against quantum corrections, cosmological constant is equal to zero, while dark energy,

leading to the late acceleration of the Universe, appears if general relativity is replaced by

the unimodular gravity [8]. Different phenomenological and cosmological aspects of this

theory, together with the study of how to search for new particles, can be found in refs.

[4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In [17] it was argued that this model may

be valid all the way up to the Planck scale (for a similar argument in a related theory,

see ref. [20]). Many of the parameters of this model are already fixed or constrained by

existing cosmological observations and particle physics experiments.

In [21] it was found that the Higgs boson of the SM can play a role of the inflaton,

if its non-minimal coupling to the gravity Ricci scalar is large enough. Exactly the same

mechanism works in νMSM and its scale-invariant version with dilaton [8]. The evolution

of the dilaton in the latter model with phenomenologically interesting choice of parameters

happens to be irrelevant for inflation.

Reference [21] provides a rough upper limit on the maximal temperature of the Uni-

verse. The aim of this work is to demonstrate that the problem of the initial conditions

for the Big Bang can be solved unambiguously in the SM and in the νMSM, and to find

these initial conditions. To this end we consider in detail how the energy stored in Higgs-

inflaton gets transferred to the SM and νMSM degrees of freedom. This allows to make

a refined estimate of the reheat temperature and to fix the concentrations of the singlet

fermions before the hot stage. We show that the abundances of new particles are too small

to influence the low temperature baryogenesis in the νMSM studied in [5, 12, 18],2 and low

temperature dark matter production worked out in [13, 14, 19].3

The Lagrangian of the SM or of the νMSM, which can be considered as the effective

theories, can contain all sorts of higher dimensional operators, suppressed by the Planck

mass. Therefore, we consider the influence of these operators on inflation and on production

of singlet fermions of the νMSM. We find that these operators are definitely not essential

for baryogenesis and for dark matter production, if mass of the lightest sterile neutrino

is below 100 keV. In other words, the conclusion that the production of WDM sterile

neutrinos with mass in the keV region must be due to their mixing with active neutrinos

is a robust consequence of the νMSM. Since the presence of higher-dimensional operators

1Perhaps, the observed accelerated expansion of the Universe should not necessarily be included in this

list as it may be irrelevant for the early stages of the Universe evolution we are interested in this work.
2See [22] for a suggestion to use singlet fermion oscillations for leptogenesis.
3For an original proposal of sterile neutrino as a dark matter candidate see [23, 24, 25], earlier compu-

tations of sterile dark matter abundance can be found in [23, 25, 26, 27].
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looks to be a generic phenomenon, we argue that the DM sterile neutrinos have to be

lighter than few MeV in order not to overclose the Universe.

The paper is organized as follows. In section 2 we review the mechanism of inflation

based on the Higgs boson of the Standard Model, and determine the relevant interactions

of the Higgs-inflaton with the other fields of the SM. In section 3 we analyse different

processes reheating the Universe after inflation and estimate the maximal temperature

Tmax. In section 4 we discuss the approximate conservation laws in the SM and the νMSM

and define the operators Q̂A. Then we estimate the values of chemical potentials µA
generated by renormalizable interactions existing in the νMSM and the SM. In section 5

we add to the theory higher dimensional operators and analyse their influence on Higgs-

driven inflation and on the generated values of the chemical potentials. In section 6 we

study the effects of CP-violation at the reheating stage. Section 7 contains conclusions.

2. Higgs-driven inflation

The inflationary model with the Higgs boson as the inflaton [21, 28] adds the non-minimal

coupling with gravity to the action of the SM (or νMSM)

SJ = SSM +

∫

d4x
√−g

(

−M
2

2
R− ξΦ†ΦR

)

. (2.1)

Here SSM is the SM action, M is some mass parameter, which is nearly equal to the Planck

mass in our case, R is the scalar curvature, Φ is the Higgs doublet, and ξ is a constant

fixed by the requirement of correct scale of the CMB fluctuations. Index “J” stands for

the “Jordan frame” action. Action (2.1) contains all possible terms of dimension 4 without

higher derivatives.4 In this section we review shortly the inflation analysis of [21, 28] and

introduce some formulas important for the study of the reheating period.

The only part of the action relevant for inflation is the scalar sector. In the unitary

gauge with Φ(x) = 1√
2

( 0
v+h(x)

)

it has the form

SJ =

∫

d4x
√−g

{

− M2 + ξh2

2
R+

∂µh∂
µh

2
− λ

4

(

h2 − v2
)2

}

, (2.2)

and Higgs vacuum expectation value is v = 246GeV. Another part we analyse later on,

while we always stick to the unitary gauge for simplicity.

The conformal transformation. The simplest way to work with this action is to get

rid of the non-minimal coupling to gravity by making the conformal transformation from

the Jordan frame to the Einstein frame (see, e.g. [29, 30]):

gµν → ĝµν = Ω2gµν , Ω2 =
M2 + ξh2

M2
P

, (2.3)

4One could also add other dimension 4 terms like R2, RµνRµν , etc., but they lead to terms with higher

derivatives in the equations of motion and, therefore, lead to additional degrees of freedom, which should

be dealt with in some special way. We do not consider such extensions here.
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whereMP ≡ 1/
√

8πGN = 2.44×1018 GeV is the reduced Planck mass. This transformation

leads to a non-minimal kinetic term for the Higgs field. So, it is also convenient to replace

h with new canonically normalised scalar field χ by making use of

dχ

dh
=

√

Ω2 + 6ξ2h2/M2
P

Ω4
. (2.4)

Finally, the action in the Einstein frame is

SE =

∫

d4x
√

−ĝ
{

−M
2
P

2
R̂+

∂µχ∂
µχ

2
− U(χ)

}

, (2.5)

where R̂ is calculated using the metric ĝµν and the potential is rescaled with the conformal

factor

U(χ) =
1

Ω4 [h (χ)]

λ

4

[

h2 (χ) − v2
]2
. (2.6)

We will a bit ambiguously write potential U and scale factor Ω as functions of either h or

χ, which should not lead to misreadings, as far as h and χ can be expressed one through

another in a unique way. Figure 1 illustrates the connection between the Higgs field in the

Jordan frame, h, and the Higgs field in the Einstein frame, χ. For ξ ≫ 1, the solution of

eq. (2.4) can be approximated in two major regions,5 separated by

Xcr ≡
√

2

3

MP

ξ
.

Namely,

χ ≃
{

h for h < Xcr ,
√

3
2MP log Ω2(h) for Xcr < h .

(2.7)

Note that for analysis of reheating we will need only the field values smaller than MP /
√
ξ,

where the logarithm in (2.7) can be expanded in the following way

χ ≃
√

3

2

ξh2

MP
for Xcr < h≪ MP√

ξ
. (2.8)

Using relations (2.7) we can explicitly write the potential as (here we assume v ≪MP /ξ)

U(χ) ≃







λ
4χ

4 for χ < Xcr ,

λM4
P

4ξ2

(

1 − e
− 2χ√

6MP

)2

for Xcr < χ .
(2.9)

Again, in the region interesting for reheating, the potential can be approximated by the

quadratic potential

U(χ) ≃ ω2

2
χ2 for Xcr < χ≪

√

3

2
MP , (2.10)

where the “inflaton mass” ω is

ω ≡
√

λ

3

MP

ξ
. (2.11)

Figure 2 shows schematically the potential (2.9).

5Exact analytic solution exists, but is not really enlightening.
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√
6 log(

√
ξh/MP )

√

3/2ξh2/MP

h
exact

log(h)

lo
g(
χ

)

MP /
√
ξMP/ξ

MP

MP /ξ

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χWMAP χ

0

λ v4/4

0 v

Figure 1: Dependence of χ (the Einstein

frame Higgs field) on h (the Jordan frame

Higgs field), logarithmic scale.

Figure 2: Effective potential in the Einstein

frame. The insert magnification is not to

scale.

Inflationary phase. The potential (2.9) is exponentially flat for large field values, and

provides the slow roll inflation. Analysis of the inflation in the Einstein frame6 can be

performed in the standard way using the slow-roll approximation. The slow roll parameters

(in notations of [1]) are easier to express analytically as functions of the field h using (2.4)

and (2.6), instead of the field χ,

ǫ =
M2
P

2

(

dU/dχ

U

)2

=
M2
P

2

(

U ′

U

1

χ′

)2

, (2.12)

η = M2
P

d2U/dχ2

U
= M2

P

U ′′χ′ − U ′χ′′

Uχ′3 , (2.13)

where ′ denotes derivative with respect to h. Slow roll ends at ǫ ≃ 1, which corresponds

to the value hend. The perturbation modes of WMAP [34] scale k/a0 = 0.002/Mpc left

horizon when the field value equals hWMAP. The latter is determined by the number of

inflation e-foldings,

N =

∫ hWMAP

hend

1

M2
P

U

U ′
(

χ′)2 dh . (2.14)

To generate proper amplitude of the density perturbations the potential should satisfy at

hWMAP the normalization condition

U/ǫ = 24π2∆2
RM

4
P ≃ (0.0276MP )4 . (2.15)

For usual quartic potential inflation this condition fixes the coupling constant λ, while in our

case this allows to find the value for ξ for any given value of λ. The inflationary predictions

(see, e.g., [1]) for the CMB spectrum parameters are then given by the expressions for

spectral index ns and tensor-to-scalar perturbation ratio r,

ns = 1 − 6ǫ+ 2η , r = 16ǫ , (2.16)

also calculated at hWMAP.

6The same results can be obtained in the Jordan frame [31, 32, 33].
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In the case of the standard Higgs potential V (h) = λ
4 (h2 − v2)2 we get for the slow roll

parameters [28] (in the limit h2 & M2
P /ξ ≫ v2, ξ ≫ 1, exact expressions can be found in

[29]),

ǫ ≃ 4M4
P

3ξ2h4
, η ≃ 4M4

P

3ξ2h4

(

1 − ξh2

M2
P

)

. (2.17)

Inflation ends in at hend ≃ (4/3)1/4MP /
√
ξ ≃ 1.07MP /

√
ξ (and χend ≃ 0.94MP ). The

number of e-foldings is (2.14)

N =
3

4

[

h2
WMAP − h2

end

M2
P /ξ

+ log
1 + ξh2

end/M
2
P

1 + ξh2
WMAP/M

2
P

]

, (2.18)

leading to hWMAP ≃ 9.14MP /
√
ξ. Thus, the WMAP normalization (2.15) requires (for

N = 59)

ξ ≃ 47000
√
λ , (2.19)

where λ is the Higgs boson self coupling constant, taken at inflationary scale. Note, that

we retained here the logarithmic term in (2.18), which was left out in [21]. This, together

with WMAP5 value for normalization (2.15), changed the numerical value in the relation

(2.19). This does not significantly change the spectral index and tensor to scalar ratio.

The spectral index is ns ≃ 1 − 8(4N + 9)/(4N + 3)2, and the tensor-to-scalar pertur-

bation ratio is r ≃ 192/(4N + 3)2.

The number N of e-foldings is fixed from the post-inflation history of the Universe

described in section 3. We show there that the inflationary stage is followed by the matter

dominated epoch, corresponding to oscillations of Higgs-inflaton with frequency ω, defined

in (2.11). The radiation dominated era starts at effective temperature Tr, given by (3.13).

Then, the number of e-foldings is (see [35])

N = 62 − log
k

a0H0
− log

1016 GeV

U1/4(χWMAP)
+ log

U1/4(χWMAP)

U1/4(χend)
− 1

3
log

U1/4(χend)

ρ1/4 (Tmax)

≃ 60.4 − log
k

a0H0
− 1

6
log

Xcr

Xr
. (2.20)

Here the present Hubble parameter is H0 = 0.7/(3000Mpc), U(χWMAP) ≃ λM4
P

4ξ2
, ρ (Tmax)

is the energy density at the beginning of the hot stage, Xr is in the range (3.10). Then,

we get

N ≃ 59 , ns ≃ 0.97 , r ≃ 0.0034 . (2.21)

The predicted values are well within one-sigma border of allowed region of parameter space,

see figure 3.

Effective couplings in the inflationary domain. The inflation and reheating of the

Universe occur at energy scales much larger, than the electroweak scale. This calls for the

study of radiative corrections to the inflationary potential. A qualitative discussion of the

influence of loop effects on inflation can be found in [21]. A number of explicit computations

(giving in some cases conflicting results) has been reported recently [36, 37, 38, 39, 40].

The conclusion of [37, 38, 39, 40] is that Higgs-driven inflation is a viable phenomenon in a
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certain interval of Higgs masses mmin < mH < mmax. The values of mmin and mmax found

in [39] are:

mmin = [126.1 +
mt − 171.2

2.1
× 4.1 − αs − 0.1176

0.002
× 1.5] GeV , (2.22)

mmax = [193.9 +
mt − 171.2

2.1
× 0.6 − αs − 0.1176

0.002
× 0.1] GeV . (2.23)

with a theoretical uncertainty δtheor = ±2GeV. The similar result for mmin was found in

an earlier paper [38] and also in [40].

What is essential for the present

0.94 0.96 0.98 1.00 1.02
0.0

0.1

0.4

0.3

0.2

WMAP5 50 60

SM+  h Rξ 2

Figure 3: The allowed WMAP+BAO+SN region for

inflationary parameters (r, ns), adopted from [34].

The green box is our predictions supposing 59 e-

foldings of inflation. Black and white dots are pre-

dictions of usual chaotic inflation with λφ4 and m2φ2

potentials, HZ is the Harrison-Zeldovich spectrum.

study of reheating, is the magnitute of

the coupling constants in the relevant

energy domain ∼MP /ξ. So, an appro-

priate renormalization group running of

the coupling constants should be taken

into account. Specifically, one should

use the MP /ξ scale value for the elec-

troweak coupling constant

α−1
W ≃ 43 . (2.24)

and the corresponding numbers for the

strong and U(1) gauge couplings.

The dependence of the value of the

scalar self-coupling λ at the scale MP /ξ

on the Higgs boson mass is illustrated

in figure 4 (see ref. [39] for detailed de-

scription). It can be seen, that out of

the window (2.22,2.23) for Higgs masses the inflationary scale Higgs self-interaction starts

to behave badly at the energy scale of inflation. For large Higgs masses it becomes large

and thus leads to strong coupling. For small Higgs masses it gets negative and leads to

instability of the electroweak vacuum. The analysis of the present paper is not applicable

very close to the boundaries of the allowed region. If the Higgs mass is approaching (2.22)

or (2.23) one has to redo the analysis including higher order radiative corrections to the

Higgs potential, what is beyond the scope of this paper.

Yet another remark concerns applicability of perturbation theory at high momenta.

As was found in [41] and in [42, 43], the perturbation theory, which is used throughout the

calculations of reheating, is inapplicable for momenta above MP /ξ in a potential of the

form (2.6). However, at reheating the energy is mostly contained in particles with momenta

∼ λMP /ξ (see below), which interact weakly. Thus, the details of the formulation of the

theory for high momenta are irrelevant for present calculations.

3. Reheating in Higgs-driven inflation

3.1 Qualitative picture
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The scalar potential for the Higgs

130 140 150 160 170 180 190
mH,GeV

0.2

0.4

0.6

0.8

1

Λ
H
M
P
�
Ξ
L

Figure 4: λ at the scale MP /ξ depend-

ing on the Higgs boson mass mH for mt =

169.1, 171.2, 173.3 GeV (from upper to lower

graph). Varying e-foldings number and an error

in the WMAP normalization measurement one in-

troduces changes invisible on the graph.

field7 in the Einstein frame exhibits three

qualitatively different behaviours, leading

to three stages of the Universe expansion.

The first, inflationary stage, corresponding

to the flat potential at χ > MP , has been

already discussed in section 2. The second

specific region of the scalar field values is

MP > χ > Xcr =

√

2

3

MP

ξ
, (3.1)

where the scalar potential is essentially

quadratic, see (2.10). The slow roll infla-

tion terminates at χ ∼ MP with the onset

of the oscillations of the scalar field. Since

the effective inflaton mass ω is non-zero for

these field values, the exponential expan-

sion of the Universe is changed to the power

low, corresponding to matter domination. The amplitude of the Higgs field during this stage

is decreased due to expansion of the Universe and due to particle creation. At last, for

χ < Xcr we are certainly in the radiation-dominated epoch: the potential for the Higgs field

(2.9) does not contain any essential mass parameters and thus is scale-invariant; the scalar

self-coupling and couplings of the Higgs field to the fields of the SM are relatively large,

and lead to a rapid energy transfer from the coherent oscillations to relativistic particles.

Assuming the instant conversion of the energy of coherent oscillations to relativistic degrees

of freedom of the SM, we get a lower bound on reheating temperature Treh & 1.5×1013 GeV

(see [21, 28]).

However, as we show in this section, creation of particles happens to be important

even for χ > Xcr, and the reheat temperature is higher. In what follows we will be

mostly interested in the very moment, when matter dominated expansion is replaced by

the radiation dominated one. That is when energy in coherent oscillations of the scalar

field is equal to energy collected by SM particles. We will characterise this moment by an

effective temperature Tr (the “r” stands for “radiation dominance”). It is determined by

equating of the would-be thermally equilibrium energy of SM plasma described by Tr to

its actual energy. The real thermal equilibrium is achieved at somewhat lower temperature

Treh < Tr.

To determine Tr, let us neglect first the effects of particle creation and consider the

evolution of the Universe with the Higgs field in the interval (3.1). The Friedman equation

reads:

H2(t) =
1

3M2
P

[

ω2

2
χ2(t) +

1

2
χ̇2(t)

]

, (3.2)

7We will use the names “Higgs boson” and “inflaton” interchangeably, depending on the context.
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and leads to a matter dominated expansion regime

a ∝ t2/3 , (3.3)

χ(t) = X(t) cos [ω(t− to)] , (3.4)

H(t) =

√
λ

3
√

2 ξ
X(t) =

2

3t
, X(t) = 2

√
2
ξ√
λ

1

t
. (3.5)

Here t is the physical time, a is the scale factor, H is the Hubble parameter, X(t) is the

amplitude of the background inflaton field oscillations, to here gives the arbitrary phase

of the oscillations, and ω is defined in (2.11). This solution is approximate. It is only

reliable for H ≪ ω, when the change of the scale factor is small during one oscillation. The

amplitude reaches the critical value Xcr at the critical time

t ≈ tcr ≡
2ξ

ω
. (3.6)

To determine the particle production, we will consider the solution (3.5) as an external

background. This approximation breaks down when the energy of created relativistic

particles is comparable with the energy of the scalar field (inflaton zero mode)

ρinf =
ω2

2
X2 =

λ

4
X2

crX
2 . (3.7)

This moment will give us the temperature Tr we are interested in.

To start with, we describe on the qualitative level various processes which occur during

the reheating stage at t < tcr and single out the most important ones. Further, we analyse

these processes in detail.

The main mechanism draining energy from the inflaton zero mode is creation of the

particles directly from coupling to the Higgs-inflaton. In the background approximation

the inflaton field (3.4) can be considered as an external source of all other fields. This

source has the form of the varying-with-time masses of all the particles (this includes the

propagating modes of the Higgs field itself). Only particles with large couplings to the

Higgs field can be created effectively by this mechanism. These are the gauge bosons and

top quark. Their masses in the region (2.8) are

m2
W (χ) =

g2

2
√

6

MP |χ|
ξ

, (3.8)

mt(χ) = yt

√

MP |χ(t)|√
6ξ

signχ . (3.9)

Here g2/4π = αW is the weak coupling constant, and yt =
√

2mt/v is top quark Yukawa.

However, exactly due to large couplings they are heavy and are still non-relativistic. The

production of such particles does not change the equation of state from the non-relativistic

matter to radiation. That change happens eventually only due to creation of the relativistic

secondary particles (such as light leptons or quarks) via decays or scatterings of the heavy

particles. A competing (but slightly slower) process is the direct creation of relativistic

Higgs excitations, which happens because the potential (2.9) is not exactly quadratic near

the origin.8

8The non-linearity of the potential (2.9) at large field values χ ∼ MP is relevant for particle creation

only during a short period at the very early time, that may be neglected.
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As a result, the generic picture of the reheating process is the following. As far as

the inflaton “mass” ω is smaller than the gauge boson (3.8) or top quark mass (3.9) for

χ & Xcr, creation of the gauge bosons or top quarks is possible only at the moments, when

the inflaton field crosses zero (when χ(t) . Xcr). During each zero crossing some gauge

bosons and top quarks are created. At first, when the concentration of the created particles

is small (occupation numbers nk ≪ 1), the creation rate is constant (see Appendix A.2).

At this stage the created W bosons are non-relativistic and decay into light SM fermions

(which are relativistic). The decay rate, however, changes with time with the decreasing

amplitude of the inflaton oscillations. The decay process sustains some quasi constant

density of the created bosons (Appendix B.1). It stops when the decay rate becomes smaller

than the production rate, which happens at the inflaton oscillation amplitude (3.21). Up

to this moment no significant energy transfer from the inflaton to radiation happens. Then

the generation process accelerates, being enhanced by the stochastic parametric resonance

(occupation numbers nk > 1, and the concentration of W bosons rises. The energy transfer

into the light SM fermions proceeds now mainly viaWW → f f̄ annihilation, (see Appendix

B.2). This process rapidly transfers all the energy to radiation, resulting in transition from

the matter domination expansion a ∝ t2/3 to the radiation domination a ∝ t1/2 at field

amplitude only slightly smaller than (3.21). This should be considered as a refined upper

bound9 on critical X. The lower bound is given by the slower energy transfer mechanism —

the generation of the Higgs bosons on close-to-vicinity nonlinearities of the potential (2.9)

(see paragraph C), which yields transition at the oscillation amplitude (3.27). We do not

analyse the production of the top quarks in the present work, because their contribution

is smaller than that of W bosons. This is because the parametric resonance enhancement

is absent for fermions due to Pauli exclusion principle.

To summarise, the matter-radiation transition happens when the amplitude of the

inflaton oscillations is somewhere in the region

3.7

(

λ

0.25

)1/2

Xcr < Xr < 40

(

λ

0.25

)

Xcr . (3.10)

The temperature Tr is estimated as follows,

g∗
π2

30
T 4
r ≃ ω2X2

r

2
=
λ

4
X2

crX
2
r , (3.11)

where g∗ ∼ 100 is the effective number of degrees of freedom of the SM. This gives for

(3.10)

1.4 × 10−5MP < Tr < 4.5 × 10−5

(

λ

0.25

)1/4

MP , (3.12)

or

3.4 × 1013 GeV < Tr <

(

λ

0.25

)1/4

1.1 × 1014 GeV . (3.13)

The coupling constant λ here is taken at the inflationary scale. Its dependence on the

physical Higgs mass is presented in figure 4. Note, that at T = Tr the particle distributions

are not yet fully thermal.

9More accurate analytical estimate of outcome of the scattering processes is hardly possible, since particle

masses vary quite rapidly.
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3.2 W boson production

Let us start with description of boson production by the external oscillating source (3.4).

We write the equation of motion with the mass given by (3.8). Actually, with formula

(3.8) we ignore the exact behaviour of the mass in time intervals when χ < Xcr: then the

potential is quartic, so the zero mode evolution also deviates from (3.4). Hence, the jump in

the derivative in m2
W is “smoothed”. This introduces an additional cutoff in the spectrum

of producedW bosons, which can be safely neglected. To simplify the computation, we also

replace the vector boson by a scalar particle. We will take into account three polarizations

of the vector boson in the final formula only.

Evolution of the mode φk with conformal momentum k is governed by the equation

φ̈k + 3Hφ̇k +

(

k2

a2
+m2

W (t)

)

φk = 0 . (3.14)

This equation can be solved in the adiabatic approximation except for the moments when

mW (t) is close to zero. The reason is that mW (t) is larger than the frequency of the

background field ω except for small background χ . Xcr. The solution of equation (3.14)

in the adiabatic approximation is (see Appendix A.1)

φk

a3/2
=

αj
k√

2k0
e−i

R t

0 k0dt +
βj
k√
2k0

e+i
R t

0 k0dt , (3.15)

where parameters αj
k
, βj

k
remain constant between the moments tj , corresponding to zero

background field χ(tj) = 0.

In the vicinity of the moments χ(tj) = 0 the mass mW (t) becomes small compared to

the background (source) frequency ω and particle creation can take place. Exact solution

in this region (see Appendix A.1) allows for matching αj+1
k

, βj+1
k

to αj
k
, βj

k
. For the change

in the occupation numbers nj
k
≡ |βj

k
|2 we have

δnj
k
≡ nj+1

k
− nj

k
=

|Rk|2
1 − |Rk|2

+
2|Rk|2

1 − |Rk|2
nj

k
+

2|Rk|
1 − |Rk|2

cos θjtot

√

nj
k
(nj

k
+ 1) , (3.16)

where Rk is a decreasing with k function defined in (A.15) (see also figure 5), and θjtot is

the k-dependent phase (A.17).

If the occupation numbers nj
k

on the right hand side of eq. (3.16) are small, nj
k
≪ 1,

it describes a simple particle creation with constant rate. This is certainly the case if the

particles, generated at each zero crossing, decay before the next zero crossing, or scatter and

change momentum k to some value where the generation coefficients in (3.16) are small. If

not, eq. (3.16) describes a resonance like production of bosons. There exist several regimes,

depending on the model. The usual (“narrow”) parametric resonance emerges when nj ≫ 1

and the phase θjtot/π changes by an integer number between tj and tj+1. In this case one

has a pronounced exponential behaviour for nk, located in narrow regions of momentum,

which are defined by ∆θjtot ≡ θj+1
tot − θjtot ≃ nπ. Another resonance situation is realized

when

∆θjtot ≫ π . (3.17)

This regime is called “stochastic resonance” [44]. In this case the jumps at moments tj
may be in either direction, but, on average, they also lead to exponential growth, though
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a slower one. The regime (3.17) is realised for X & (λ/g2)Xcr (see (A.17), (A.8)), which is

always true in our case. In this regime the particle generation proceeds for any momenta

with not too small |Rk| (otherwise the last term easily spoils growth of the occupation

number), which implies low momenta.

So, while the number of created particles is small, nk ≪ 1, the creation of the W+

bosons from (3.16) proceeds in the linear regime and can be approximated as (see Appendix

A.2)
d(a3nW+)

dt
≈ 3 · a3A

αW
2π2

ω2X2
crX , (3.18)

with numeric coefficient A ≃ 0.0455. The created particles are essentially non-relativistic.

For concentrations of other gauge bosons we have the obvious relations nW+ = nW−,

nZ = nW+/ cos2 θW , where θW is the weak mixing angle.

When the occupation number becomes larger, the production is enhanced due to the

Bose statistics, and is becoming approximately exponential (Appendix A.3)

d(a3nW )

dt
∼ a32ωBnW , (3.19)

where the numerical coefficient B ≃ 0.045. These particles are also created with nonrela-

tivistic momenta. Note again, that here the backreaction of the particles on the condensate

is neglected.

3.3 Transfer into relativistic particles

Now let us analyse how decay and scattering of the W bosons influence their generation,

described in the section 3.2.

At small concentrations of the bosons the main process is their decay. The (average)

decay width of the SM gauge boson is

Γ ≈ 0.8αW 〈mW 〉 , (3.20)

The mass here is approximated as averaged over inflaton background field oscillations.

Comparing (3.20) with the production rate (3.19), we find that for

X >
2

0.64π

B2λ

α3
W

Xcr ≈ 40

(

λ

0.25

)

Xcr . (3.21)

the decay is a more rapid process and prevents the exponential regime to start.

The energy transfer rate is then balanced by the linear production (3.18) and the decay

rate (3.20). In Appendix B.1 we show that the energy transfer to the relativistic modes is

negligible for this period.

When the decay process becomes inefficient, the concentration grows, leading to en-

hancement of the production approaching exponential behaviour (3.19). At the same time

the main process responsible for the energy transfer to light particles becomes the annihila-

tion of the W bosons, which is proportional to density squared. The relevant process is the

annihilation into two fermions WW → f f̄ via t-channel fermion exchange. The estimate

of the cross section for the process is

σ ≈
(

g√
2

)4 2Nl + 2NqNc

8π

1

〈m2
W 〉 ≈ 10π

α2
W

〈m2
W 〉 , (3.22)
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where Nl = 3 is the number of lepton generations, Nq = 2 + 1/4 is the effective number of

quark generations (virtual t-quark contribution is suppressed by (mW/mt)
2 ∼ 1/4), and

Nc = 3 is the number of colours.

Then, the equality between generation and annihilation of the W bosons is reached at

nscatter =
2Bω

σ
. (3.23)

The energy drain into the relativistic modes is

d

dt

(

a4ρ
)

= 2a4 ·
√

〈m2
W 〉 · σn2

scatter . (3.24)

The integral is saturated at late times and gives nearly immediate transfer of all the energy

into the relativistic modes after the regime (3.21) finishes.

One may note, that this approximation may overestimate W boson production, and it

may actually proceed at a smaller rate, because of several reasons. First, the occupation

number nk is not too large (B.9), and resonance regime is not fully reached. Second, the

exponent in (3.19) is actually the upper limit. Careful analysis may reveal that the process

is slower, so the transfer to the relativistic degrees of freedom happens later (at lower X)

than (3.21), the latter should be considered as the upper bound on Xr. The lower bound

is then given by a slower process of generation of the Higgs field excitations.

3.4 Higgs production

Another particles produced during the inflaton oscillations are inflaton excitations (Higgs

particles). Really, mass of the excitations δχ in the background χ is given by m2
χ = U ′′(χ),

which is, approximately

m2
χ(t) =

{

ω2 for χ(t) > ω√
3λ
,

3λχ2(t) for χ(t) < ω√
3λ
,

(3.25)

where χ(t) is given10 by (3.4). Thus, we need to solve the same equation (3.14), but now

with the mass (3.25). The details of the solution are given in Appendix C. The produced

particles are relativistic, with energy E ∼ 1
2

√
3λX, and with energy balance equation

density
d(a3ρ)

dt
≃ a3 ω

5

2π3
. (3.26)

This competes with the inflaton (zero mode) energy density ρinf at

X =
MP

ξ

(

ξ
2
√

6λ

33π3

)1/3

≈ 3.7

(

λ

0.25

)1/2 ( ξ

47000
√
λ

)1/3

Xcr . (3.27)

This provides the lower bound on the moment of transition to the radiation dominated

epoch Xr.

10Of course, this is a rough approximation for X ≫ Xcr, because we should in principle solve the equation

of motion for χ in the exact potential. But at large X ≫ Xcr the time, system spent in the region χ < Xcr,

is small, and the background solution can be simply approximated by (3.4).
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3.5 Fermion production from Higgs decay

For completeness, let us also calculate the number of light fermions generated at the re-

heating stage by the inflaton-Higgs field. The result here does not apply to heavy fermions

(top quark). The latter abundance is of small interest: before thermalization it is in any

way not larger than that of the gauge bosons, and after thermalization top quarks are

generated rather fast.

We analyse here the production of the light fermions by the Higgs condensate decay

due to the Yukawa interactions. The latter are of the form (3.9) with some small Yukawa

y instead of yt. The exact treatment would require the solution of Dirac equation with

the time-dependent mass (3.9). To make an order-of-magnitude estimate, we will replace

the source ∝
√

sin(ωt) by the simpler one, ∝ sin(ωt). Though the spectra of the produced

fermions are different (the spectrum is monochromatic for the sinusoidal source), their

total numbers are similar. After this substitution the fermion time-dependent mass term

becomes:

y

√

MP√
6ξX

X sin(ωt)ψ̄ψ . (3.28)

In the lowest order of perturbation theory the rate of fermion production here is equivalent

to the decay rate of the system of scalar particles with mass ω, concentration n = ωX2/2

and effective Yukawa constant y
√

MP√
6ξX

:

d

dt
(a3nψ) = a3ωX

2

2
√

6
ω
y2

8π

(

MP

ξX

)

, (3.29)

(and the same formula for the antiparticles nψ̄). An elementary computation leads to the

constant physical particle density during the matter dominated expansion,

nψ = y2ω
2MP

16π

1√
3λ

= y2

√
λξ

32
√

2π
X3

cr ≈ 80

(

λ

0.25

)

y2X3
cr . (3.30)

It is convenient to compare nψ with the entropy after the end of the matter domination

stage

sr = g∗
4π2

90
T 3
r = g∗

4π2

90

(

30λ

4π2g∗
X2

crX
2
r

)3/4

≈
[

2.9

(

λ

0.25

)3/2

÷ 100

(

λ

0.25

)9/4
]

X3
cr , (3.31)

where we adopted (3.12) for the range of Tr. The resulting abundance is in the range

∆ψ ≡ nψ
sr

≈
[

0.8

(

λ

0.25

)1/2

÷ 28

(

λ

0.25

)5/4
]

y2 . (3.32)

These results are used below for an estimate of primordial abundance of the sterile neutrinos

in the νMSM.

– 15 –



4. Initial conditions for the hot Big Bang

In section 3 we found that when the amplitude of the Higgs-inflaton drops below 3.8Xcr

the matter-dominated expansion of the Universe is changed to the radiation dominated

behaviour, which can be characterised at this moment by the effective temperature Tr ≃
3×1013 GeV. It is this moment which can be considered as a starting point for the standard

hot Big Bang: the later evolution of the system can be followed with the use of the SM or

the νMSM Lagrangian and standard finite temperature equilibrium and non-equilibrium

methods. As we discussed in the Introduction, to specify the system completely, one has

also to determine the values of the chemical potentials corresponding to either exactly or

approximately conserved quantum numbers. In this section we identify the most important

operators and fix the chemical potentials for them.

Let us start with the SM. It has got three anomaly-free exactly conserved quantum

numbers Qα = Lα − 1
3B (Lα is the lepton number of the generation α and B is the bary-

onic number). In addition to them, there are quite a number of approximately conserved

different fermionic numbers, such as baryon number (broken by electroweak anomaly),

asymmetry in the number of right-handed electrons and light quarks such as u and d (bro-

ken by small Yukawa couplings), etc. In the standard inflationary logic one concludes that

all the quantum numbers — eigenvalues of corresponding operators — are exponentially

small at the end of inflation (at h ∼ MP ) and thus can be put to zero. What concerns

the charges Qα, they cannot be created in the process of reheating the Universe, anal-

ysed above, simply because they are exactly conserved. As for the other charges, such as

asymmetry in the light quark flavours, their generation can only occur due to CP-violating

effects. Therefore it is suppressed by the Jarlskog determinant [45], since the only source

of CP-violation in the SM is related of the Kobayashi-Maskawa phase. Applying the argu-

ment of refs. [46, 47] to this case one concludes that asymmetries in all CP-odd operators

at the beginning of the Big Bang are at most on the level of 10−22. To summarize, in the

SM all chemical potentials are negligibly small at the beginning of the Big Bang. At the

same time, the CP-even operators (such as the abundance of fermions plus antifermions

of a given type) equilibrate with the rate not smaller than α2
WT , which exceeds the rate

of the Universe expansion right after the beginning of the Big Bang. So, deviations from

thermal equilibrium in the CP-even sector in the SM can be neglected as well.

Let us turn now to νMSM. The most general renormalizable Lagrangian containing

the SM fields and three right-handed singlet fermions has the form:

L = LSM + N̄Ii∂µγ
µNI − yαI L̄αNIΦ̃ − MIJ

2
N̄ c
INJ + h.c. , (4.1)

where LSM is the Lagrangian of the SM, yαI are new Yukawa couplings, Φ is the SM Higgs

doublet, and Φ̃i = ǫijΦ
∗
j . In the contrary to the SM, there are no exactly conserved global

quantum numbers in the model. To analyse the approximately conserved currents, at least

the orders of magnitude of various parameters, entering eq. (4.1), have to be fixed. In

the νMSM the Majorana masses of the singlet fermions are below the electroweak scale

and, correspondingly, the new Yukawa coupling constants are smaller than those in the

quark or charged lepton sector. Their values are constrained by cosmology, astrophysics

and experiment.
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The lightest out of the 3 neutral leptons,N1, plays the role of the dark matter particle.11

Its Yukawa couplings are bounded from above as

∑

|Fα1|2 . 10−24 (4.2)

from cosmological considerations [4, 14] related to DM production and from X-ray con-

straints on the radiative width of the DM sterile neutrino [10].

The heavier nearly degenerate singlet fermions N2,3 (their common mass is denoted by

M) fix the pattern of neutrino masses and mixings and produce baryon asymmetry of the

Universe. Their Yukawa couplings satisfy:

F 2
2 =

κMmatm

ǫv2
, (4.3)

where matm ≈ 0.05 eV is the atmospheric neutrino mass difference, κ = 1(2) for normal

(inverted) neutrino mass hierarchy, F 2
i ≡ [y†y]ii, and ǫ = F3

F2
< 1. If ǫ ∼ 1, i.e. for the

case when the couplings of singlet fermions to active leptons are similar, F 2
2 is at most

∼ 2 × 10−13, corresponding to M ∼ MW . For the smallest possible value of parameter

ǫ ≃ 7 × 10−5 (a lower limit is coming from the requirement of successful baryogenesis, see

figure 10 of [18]) one gets an absolute upper bound on F 2
2 ,

F 2
2 . 3 × 10−11 , (4.4)

roughly coinciding with the electron Yukawa coupling.

In the limit Fi → 0 the sterile fermions completely decouple from the fields of the SM,

and the νMSM contains an infinite number of exactly conserved operators, corresponding to

a number of singlet fermions with any given momentum. Right after inflation these numbers

are exponentially small and can be put to zero. Then, these singlet fermions are created as

described in section 3.5.12 With the use of (4.2,4.4,3.32) we get that the abundance of DM

sterile neutrinos N1 produced at the reheating stage is at most ∆1 = nN1/s ≃ 7 × 10−23,

and the abundance of N2,3 is at most 2 × 10−9. These numbers are too small to play any

role in the subsequent evolution of the Universe. These were the constraints on CP-even

operators, the CP-asymmetries in left-right helicities are suppressed much stronger as the

CP violating amplitudes must contain at least two extra powers of Yukawas.

To summarize, the initial condition for the Big Bang in the νMSM can be described

by the density matrix

ρ̂(0) = ρ̂SM ⊗ |0〉〈0| , (4.5)

where ρ̂SM = Z−1
SM exp(−βĤSM), β ≡ 1/T , is the equilibrium SM density matrix at a tem-

perature T with zero chemical potentials, and |0〉 is the vacuum state for sterile neutrinos.

The physical meaning of eq. (4.5) is clear — it describes a system with no sterile neutrinos,

while all the SM particles are in thermal equilibrium. It is this expression which was used

for computation of DM abundance and for computation of baryon asymmetry in the νMSM

in refs. [13, 14, 19, 5, 18].

11We work in the basis in which M12 = M13 = 0, M23 = M32 = M , M1 = M11 ≪ M , M22 ∼ M33 ≪ M .
12Yet another mechanism for production of singlet fermions is the decays of Z and W bosons to sterile

neutrino and left-handed lepton. Since the rate of this reaction is suppressed not only by the square of the

same Yukawa coupling but also by an extra gauge constant, we expect it to be subdominant.
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5. Higher dimensional operators

In the first part of the paper we analysed the inflation and reheating in the model with

action (2.1). However, one may expect that there are corrections to this action, suppressed

by some large energy scale (the Planck mass). We consider the following higher dimensional

operators as an addition to the SM or νMSM Lagrangian:

δLNR =
β

MP
Φ†ΦN̄ cN − a6

M2
P

(Φ†Φ)3 +
fab
MP

L̄caΦΦ†Lb + · · · + h.c. . (5.1)

The natural value of all dimensionless coupling constants is about one.

The following questions arise:

1. Do these operators spoil the picture of inflation discussed above?

2. Does the reheating change?

3. Can the singlet fermions be created due to these operators in substantial amounts?

In this section we analyse these issues. Along the lines of consideration in section 2,

we rewrite first these operators in the Einstein frame. For Higgs part δLNR this yields a

modification of the potential in (2.2), (2.6). The transformation rule for the Higgs-fermion

interaction is readily obtained, if we also make the conformal transformation of all the

fermionic fields ψ

ψ → ψ̂ = Ω−3/2ψ . (5.2)

The kinetic part for the fermions is conformally invariant, while the Yukawa part of the

action

SJ,Yukawa =

∫

d4x
√−g Y (h)ψ̄ψ , (5.3)

changes. Here Y (h) describes the generalised Yukawa interaction providing the fermion ψ

with mass. It is not important for the present discussion whether this is the Majorana or

the Dirac fermion. The corresponding Einstein frame term is

SE,Yukawa =

∫

d4x
√

−ĝ Y [h (χ)]

Ω(χ)
¯̂
ψψ̂ . (5.4)

Specifically, for the Dirac mass this yields the Einstein-frame terms like

SE,Dirac =

∫

d4
√

−ĝ m(v)

v

h(χ)

Ω(χ)
¯̂
ψψ̂ , (5.5)

which we already used in deriving (3.8), (3.9). Note, this mass rescaling is similar to that

of massive gauge bosons.

For the Majorana higher dimensional term in (5.1) we get

δLE,NR,Majorana =
β

2MP

h(χ)2

Ω(χ)
ˆ̄N cN̂ . (5.6)

Note, that at the reheating stage, (MP /ξ ≪ χ ≪ MP /
√
ξ), we have Ω ∼ 1, so the only

change is the field substitution in accordance with (2.8).
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5.1 Contributions of the higher dimensional operators to inflation

Clearly, the main effect of the higher dimensional operators is expected when the Jordan

field h is large, of order MP . Indeed, at this scale the higher order Higgs field operators

may spoil the flatness of the Einstein frame potential (2.9), and the fermion Majorana

mass terms can also give sizeable radiative corrections to the potential. This can change

the inflationary properties of the model. In particular, inflation may turn to be impossible

if the sign of the slope of the potential is changed in the inflationary region. Or, the pre-

dictions of the CMB spectral index and tensor-to-scalar ratio may leave the experimentally

admitted region. However, the constraints on higher dimensional operators, imposed by

the requirements that the inflation is not spoiled, turn out to be rather weak. The reason

is that the inflationary potential is only essential at sufficiently small values of the Higgs

field, h . hWMAP ∼ 10MP /
√
ξ. These values are well below the Planck mass, so that

non-ronormalizable contributions are well suppressed. We analyse below in some detail the

contribution of operators (5.1) to inflationary potential.

5.1.1 Higgs operators

Let us analyse the following higher order terms added to the Higgs potential:

δV =
anh

n

2n/2Mn−4
P

, (5.7)

n = 6, 8, . . . . As far as the operators are suppressed by the Plank mass, their effect is mostly

important at high values of h. At this scale we have13 dχ/dh ≃
√

6MP /h, Ω4 ≃ ξ2h4/M4
P .

The contributions to the slow roll parameters at N & 60 are

δǫ =
4(n− 4)2

3λ2

a2
n

2n

(

h

MP

)2n−8

, (5.8)

δη =
2(n− 4)2

3λ

an
2n/2

(

h

MP

)n−4

. (5.9)

The main contribution comes from the lowest order power term, h6. Thus, for the change

of the parameters at the normalized-to-WMAP value of the field we have

δǫ ∼ 1.7 × 10−5a2
6 , (5.10)

δη ∼ 0.005a6 , (5.11)

for λ = 0.25. This implies the change in the spectral index δns ≃ 0.01a6 − 0.0001a2
6 and in

the tensor to scalar ratio δr ≃ 0.0003a2
6.

To keep the spectral index within 1σ bounds 0.94 < ns < 0.98 (at small r), see

figure 3, the coefficient for the dimension six operator in the Higgs potential should be

|a6| . 3. Hence, no significant contributions are expected from the higher order operator

with natural values of the coefficients of order one.

13At the end of inflation the values of dχ/dh and Ω are different, but it only slightly changes the WMAP

value for ξ, as far as the contribution from (5.7) are more suppressed for lower h.
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5.1.2 Yukawa terms

Let us now analyse the effect of the Yukawa terms for the sterile neutrinos on the inflation.

They come from the fermionic loop contributions to the effective potential for the Higgs

field. According to (5.4) and (5.6) the mass term for the right handed neutrinos in the

Einstein frame has the form

Lmass =

[

MI

2Ω(h)
+

βh2

2MPΩ(h)

]

N̄ cN ,

where MI is the usual Majorana mass term for the sterile neutrinos in νMSM. For large h

the first term is suppressed, but the second one (dimension 5 operator) provides the mass,

growing with the field. The latter could change significantly the effective potential for the

Higgs field. Indeed, the term yHL̄N induces, in the Einstein frame, the usual Dirac lepton

mass, the growth of which stops at h ∼MP /
√
ξ, being suppressed by Ω(h). This dimension

5 contribution to the mass yields the following contribution to the Higgs effective potential

in the inflation region

δU(h) = −m
4
N(h)

32π2
log

m2
N (h)

µ2
≃ − β4h8

32π2Ω4M4
P

log
h4

Ω2µ2
. (5.12)

For high enough β this changes the sign of the derivative of U(h) at some h, which would

make the inflation impossible or limit its duration.14 Let us calculate the slope of the

potential

dU/dχ

U
=

U ′

Uχ′ ≃
4

hΩ2

(

1 − h6ξ3

M6
P

β4 log(h4/Ω2µ2)

8π2λξ2

)

1

χ′ , (5.13)

where ′ means derivative with respect to h and we neglected the derivative of the logarithm.

It is required that U ′(h) > 0 for at least 60 e-foldings of inflation, i.e. for all h satisfying

h
√
ξ/MP . 10. The logarithm here, accounting at least for the inflationary epoch, 1 .

h
√
ξ/MP . 10, is about log(100) ∼ 5. This implies the constraint

β4 log(h4/Ω2µ2)

8π2λξ2
< 10−6 ,

leading to

β2 . 47

(

λ

0.25

)

. (5.14)

For smaller Higgs masses the bound is stronger, but always much larger than one. We

see, that for rather large value of the dimensionless constant in front of dimension-5 mass

operator for the right-handed neutrinos, the inflation is not spoilt. It is also straightforward

to check by exact calculation of the spectral index that constraints from the WMAP on ns
lead to essentially the same bound on β.

14Of course, one could imagine starting inflation exactly from the top of the potential, where the derivative

of U(h) is zero. However, this corresponds to a highly tuned situation, keeping in mind that the change of

the derivative is due to interplay between tree level term and radiative corrections to the effective potential.
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5.2 Sterile neutrino production

As we have seen in section 3.5, during preheating the sterile neutrinos are produced very

slowly by the renormalizable dimension 4 operators. Let us estimate the contribution of

the dimension-5 operators (5.1) to sterile neutrino production during and after preheating.

We will separately analyse the production in the thermal bath after reheating by the

annihilation process hh → NN , and during reheating by the decay of the inflaton-Higgs

condensate.

5.2.1 Thermal production

Let us start with the study of neutrino production in the primordial plasma. In this

section we consider the neutrino production after reheating of the Universe, at T ∼ Tr
(the higher temperatures are more essential due to the suppression of the relevant operators

by the Planck mass). Here the electroweak symmetry is restored, and the production of

sterile neutrinos goes through annihilation of the Higgs bosons (4 degrees of freedom,

corresponding to the unbroken phase of the SM) due to coupling (5.1).

The cross section of this process is (neglecting the neutrino mass)

σhh→NN =
β2

8πM2
P

. (5.15)

In the absence of other sources of neutrino production, the interaction (5.6) contributes to

the r.h.s. of the Boltzmann equation for sterile neutrino density nN

d

dt
(a3nN ) = a34σhh→NNn

2
h . (5.16)

Here we took into account the annihilation of all four modes, nh stands for the density of

each scalar degree of freedom.

This equation can be easily integrated accounting for the fact that at T < Tr the

Universe is at the radiation dominated stage:15

a ∝
√
t , nh =

ζ(3)

π2
T 3 , (5.17)

H ≡ ȧ

a
=

√

π2g∗
90

T 2

MP
=

1

2t
, s = g∗

4π2

90
T 3 , (5.18)

The solution of equation (5.16) gives the neutrino density-to-entropy ratio,

∆N ≡ nN
s

=
135ζ2(3)

√
10

4π8g
3/2
∗

β2

MP
(Tr − T ) ,

where g∗ = 106.75 is the total number of degrees of freedom of the SM. We also set the

initial abundance to zero. We will compute it in the next chapter, dealing with sterile

neutrino production during preheating.

15We suppose that at the temperature Tr the Universe is already in a fully thermalised state. Though

this is not exactly the case, we expect that this assumption can only overestimate the number of produced

neutrinos, since the non-equilibrium Higgs spectra are more enhanced in the infrared region in comparison

with the thermal one.
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Putting the numbers, we get at low temperatures T ≪ Tr:

∆N = 1.5 × 10−5β2 Tr
MP

. (5.19)

With the use of this relation we can answer the question whether the primordial thermal

production of the lightest practically stable sterile neutrinos can substantially contribute

to the DM abundance. The neutrino-to-entropy ratio remains intact, so at the current

moment we have

s0 =
nN,0
∆N

=
nB,0
∆B

,

where ∆B = 0.87 × 10−10 is the baryon-to-entropy ratio and nB,0 is the present baryon

number density. Therefore, we can write for the sterile neutrino abundance ΩN

ΩN

ΩDM
=

ΩB

ΩDM

mN

mp

∆N

∆B
,

where mN and mp are the sterile neutrino and proton masses, respectively, ΩB = 0.046

and ΩDM = 0.23 are the baryon and DM abundances [34]. Hence,

ΩN

ΩDM
=

MN

27 keV
· β

2Tr
MP

. (5.20)

So, for the maximal allowed β (5.14) and for the reheat temperature in the range

(3.13), we conclude that the neutrino mass, required to provide the proper DM abundance,

should be in the range

MN =

(

0.25

λ

)

[

13

(

0.25

λ

)1/4

MeV ÷ 42MeV

]

. (5.21)

If the dimension 5 operator is present with the “natural” coefficient β ∼ 1, then the mass

of the (long living) sterile neutrino should not exceed

MN < 600MeV

(

0.25

λ

)1/4

, (5.22)

in order not to overproduce the DM (the upper bound from (3.13) is used for the estimate).

5.2.2 Production during preheating

In this section we consider the neutrino production in the early Universe right after inflation

got terminated. The production during this period happens due to the effective interaction

with the Einstein frame field χ

L =

(

β√
6ξ

|χ|N̄ cN + h.c.

)

. (5.23)

We will see that this mechanism produces more sterile neutrinos, than the thermal pro-

duction discussed above.

To find particle production due to the time-dependent fermion mass one has to study

the Dirac equation following from (5.23). However, to simplify the discussion, we proceed
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as in section 3.5 and replace |χ| by χ. Then the rate of fermion production coincides, to

the lowest order in Yukawa coupling, with the decay rate of a collection of scalar particles

with certain mass and number density. An analysis performed in Appendix F shows that

the number density of produced fermions is not affected by this replacement, though the

spectrum changes.

We can write the Boltzmann equation as

d

dt
(a3nN) = a3Γχ→NNnχ ,

where we replaced the oscillating source by an ensemble of free scalar particles with the

number density nχ = ω
2X

2 and particle decay width Γχ→NN = β2

6ξ2
ω
8π .

Then with background (3.4), (3.5) one gets (the early-time contribution is negligible):

nN (X) =
β2

√
λ

48
√

2πξ
X2

crX .

Dividing this by the entropy (3.31) we get

∆N =
β2

32π
√
π

(

30

λg∗

)1/4 1

ξ

√

Xcr

X
=

β2
√

10

32π2√g∗ξ2
MP

Tr

= 1.8 × 10−12

(

0.25

λ

)

β2MP

Tr
. (5.24)

This is larger than contribution from thermal generation (5.19), for the reheating temper-

ature in the range (3.13).

Proceeding analogously to the previous subsection we get

ΩN

ΩDM
= β2 MN

2.2 × 108 keV

(

0.25

λ

)

MP

Tr
. (5.25)

So, for the maximal allowed β given by (5.14) and for the reheat temperature in the range

(3.13), we conclude that the neutrino mass, required to provide proper DM abundance,

should be in the range

MN = 65keV ÷ 210

(

λ

0.25

)1/4

keV . (5.26)

If β ∼ 1, that is what is naturally expected, we have

MN < 3

(

0.25

λ

)

MeV .

Let us summarize the results obtained above. If a more complete, than the νMSM,

theory leads to higher-order non-renormalizable operators characterised by a “natural”

constant β ∼ 1, then the mass of the DM sterile neutrino must not exceed few MeV.16

Otherwise, it will be produced in amounts enough to overclose the Universe. Sterile neu-

trinos, produced at reheating, can only play the role of CDM, since their mass must exceed

16For smaller β this limit scales as MN ∝ 1/β2.
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65 keV. This requirement comes from the inflationary upper limit on β (5.14). Finally,

if the sterile neutrino has a mass in O(10) keV region and thus plays a role of WDM

candidate, the thermal primordial production, discussed in this section, plays no role.

The higher dimensional operators, of course, produce also heavier singlet fermions of

the νMSM. In section 6 we analyse whether this has any influence on the low-temperature

baryogenesis due to singlet fermion oscillations.

6. Higher dimensional operators and baryon asymmetry

It is shown in section 5 that the abundance of DM sterile neutrino, created at reheating

due to higher dimensional interactions, cannot exceed

∆N ∼ 10−5 . (6.1)

Hence, the “primordial” (related to inflation) creation of DM is not effective for light

sterile neutrinos, and may play a role only if MN ≥ 65 keV. Interestingly, this number is

only somewhat larger than an upper limit on the mass of DM sterile neutrino produced

resonantly due to lepton asymmetry generated in the νMSM [18, 19], M1 . 50 keV. In

other words, the initial condition (4.5) is certainly valid for sufficiently light singlet fermion

(mass below 65 keV), which could play a role of WDM.

Other singlet fermions can be produced due to the same type of higher dimensional

interactions (note that for the abundance computation the magnitude of the Majorana

mass plays no role), and their abundance is bounded from above by (6.1). This number

is much smaller than one, meaning that the heavier singlet fermions are practically absent

at the beginning of the hot Big Bang. Still, in order to proof that the density matrix (4.5)

can be used as an initial condition, one must show that the CP asymmetries in distribution

of singlet fermions do not exceed the baryon asymmetry of the Universe ∼ 10−10.

It is not difficult to see that this is indeed the case. To this end consider the most gen-

eral form of the leptonic part of the Lagrangian, taking into account the higher dimensional

operators of dimensionality 5 as well:

LCP =
βIJ
MP

Φ†ΦN̄ c
INJ +

fαβ
MP

L̄cαΦ̃Φ̃†Lβ − yαI L̄αNIΦ̃ + gαβL̄αEβΦ + h.c. , (6.2)

where Eβ are the right-handed charged leptons. To get an amplitude of CP-violating

effects, one may consider the imaginary parts of re-parametrisation invariant products of

Yukawa couplings, which can be considered as a generalization of Jarlskog invariant for the

Kobayashi-Maskawa quark mixing to this case (see also [46, 47]). These invariants can be

written as traces in flavour space of the products of βIJ , fαβ, yαI and gαβ (no contraction

between Greek and Latin indexes).

The fermion production due to Higgs oscillations and Higgs scattering appears first to

the second order in these couplings. As we have seen in section 5 the leading effect comes

from the first term in (6.2). Clearly, there is no CP-violation in this order. To the fourth

order in coupling constants the CP-violating effects appear through the CP-violating trace

Tr[y†βyf ]. Since from the flatness of potential |f | . β . 6, and because yαI are strongly

bounded from above by (4.2,4.4), there is a suppression of the asymmetry at least by 10

orders of magnitude in comparison with (6.1). Going to higher orders makes the situation
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even worse. To conclude, the initial conditions for the Big Bang are correctly described

by eq. (4.5), even if higher dimensional operators are included in the νMSM, and thus

the baryogenesis is a low-temperature phenomenon, having nothing to do with inflation or

Planck scale physics.

7. Conclusions

In this paper we analysed in detail the evolution of the Universe in the scenario where

the Higgs boson of the SM plays a role of the inflaton. The history of the Universe can

be divided into three stages. The first one is inflation. Here the non-minimal coupling of

Higgs to gravity makes the effective scalar potential flat, the Universe expands exponentially

and the necessary spectrum of perturbation is generated. This stage finishes roughly at

h ∼ MP . During the second stage the Universe expands as under matter domination.

The Higgs field oscillates in the nearly quadratic potential for MP /ξ < h < MP , and the

particle production is not effective. When h reaches the critical value h ≃MP /ξ the energy

stored in Higgs zero mode is transferred rapidly in other degrees of the SM, producing the

hot Big Bang with temperature Tr ≈ 1014 GeV. After this time the Universe is dominated

by radiation.

We have shown that at the onset of the radiation dominated epoch the densities of all

CP-odd operators in the SM can be put to zero and demonstrated the for the case of the

νMSM the concentrations of the singlet fermions are negligible at Tr.

We also considered an extension of the SM and νMSM adding to them higher dimen-

sional operators suppressed by the Planck scale. We analysed the constraints on these

operators coming from the condition to have successful inflation. We demonstrated that

the concentrations of the singlet fermions at Tr can be safely put to zero, provided the

mass of DM sterile neutrino does not exceed 100 keV. This means that in this case the pro-

duction of baryon asymmetry and of dark matter must occur at small temperatures (about

and below the electroweak scale) by essentially the same mechanism, as was described in

[18, 19]. The properties of singlet fermions can be almost unambiguously fixed by different

cosmological considerations [18, 19].

We found that the presence of higher-dimensional operators provides a new mecha-

nism for primordial production of DM sterile neutrino. This mechanism is effective in

models with sufficiently heavy sterile neutrinos, MN & 100 keV. No presently available

astrophysical constraints (in particular, those associated with X-rays) can exclude this

possibility, since production occurs even if DM sterile neutrino Yukawa couplings are iden-

tically equal to zero. However, if the solution of the short scale difficulties of the CDM

scenario [48, 49, 50, 51, 52, 53, 54] is to be given by the WDM, this region of the parameter

space should be discarded.17 At the same time, there are no reasons to expect that these

operators are suppressed by the scale exceeding the Planck one (i.e. it is unlikely that

β < 1). Therefore, the models with DM sterile neutrinos heavier than 3MeV are generally

disfavoured due to problems with dark matter overproduction. These arguments provide

an extra justification of sub MeV mass of the lightest singlet fermion within the νMSM.

17See, however, ref. [55], where it is shown that heavy sterile neutrinos could be WDM for other types of

production mechanisms.

– 25 –



Note added

Some time after our paper was posted at arXiv the article [56] devoted to the same subject

appeared. Most of the conclusions of [56] are similar to ours. In particular, the authors

of [56] used a similar formalism to analyze the transfer of energy from the Higgs field

oscillations to gauge bosons. A detailed analysis of differences and similarities of these

works goes beyond the scope of the present paper. We would like just to mention that

some (not inessential for physical consequences) differences in numerics are presumably

due to the fact that annihilation of created gauge bosons was not accounted for in [56],

leading to the different rate of transfer of energy to relativistic particles at later stages of

reheating.
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A. W boson production

A.1 Semiclassic approach

The discussion in this section closely follows [44]. At first approximation a creation of

W bosons can be regarded as a creation of particles with mass (3.8) varying with the

amplitude of the Higgs field (3.4). This approximation breaks when important amount of

energy is transferred from the inflaton zero mode (3.7). If at this moment the energy is

in the relativistic modes this corresponds to the moment Tr of transition to the radiation

dominated expansion.

To solve the equation (3.14) we rescale the variables by

Φk = a3/2φk . (A.1)

This leads to the equation for an oscillator with varying frequency

Φ̈k + k2
0(t)Φk = 0 , (A.2)

k2
0(t) =

k2

a2
+m2

W (t) + ∆ , (A.3)

where ∆ ≡ −3
4

(

ȧ
a

)

− 3
2
ä
a is always small and can be neglected. The initial conditions,

corresponding to vacuum oscillations, are

Φk(t) =
e−ik0t√

2k0
. (A.4)

Equation (A.2) can be solved in the adiabatic approximation when k̇0 ≪ k2
0. At k = 0 this

condition is equivalent (up to a change of the scale factor a, which is negligible in our case)
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to ṁW ≪ m2
W . This is true for

|t− tj | ≫
( √

6ξ

2g2MPXω

)1/3

=
1

41/3K
, (A.5)

where tj are moments when inflaton crosses zero, so that m2(tj) = 0, and K is the natural

scaling parameter defined in (A.12). In these regions adiabatic solution is

Φk =
αj

k√
2k0

e−i
R t

0
k0dt +

βj
k√
2k0

e+i
R t

0
k0dt , (A.6)

where parameters αj
k
, βj

k
remain constant within tj−1 < t < tj. At the moments tj the

coefficients get changed by the Bogolubov transformation

(

αj+1
k

e−iθ
j

k

βj+1
k

e+iθj
k

)

=

(

1/Dk
R∗

k/D∗
k

Rk/Dk
1/D∗

k

)

(

αj
k
e−iθ

j

k

βj
k
e+iθj

k

)

, (A.7)

where Rk and Dk are the “reflection” and “transition” coefficients for each interval tj−1 <

t < tj (they obey the equality |Rκ|2 + |Dκ|2 = 1), and

θj
k
≡
∫ tj

0
k0dt . (A.8)

To find the coefficients Rk and Dk for each interval we need to solve exactly eq. (A.2)

in the vicinities of the moments when mW ≃ 0 (and where the adiabatic approximation

is inapplicable) and match this solution with (A.6) in the intermediate region of the field

amplitude. Obviously, exact solution is impossible, but we can approximate m2
W (t) near

zero as const ·|t− tj |. This approximation to the potential is good enough at

|t− tj| ≪
√

6

ω
. (A.9)

The regions (A.5) and (A.9) intersect for

X >
λ

48
√

6παW
Xcr , (A.10)

which covers all the possibly interesting reheating period. At the same time, one can

estimate, that the effects of “smoothing” of the |t− tj | are also insignificant up to approxi-

mately Xcr. Thus, we can match the solution of the linear equation and adiabatic solution.

To solve the “linearised” equation we rescale the variables as

κ =
|k|
Ka

, τ = K(t− tj) (A.11)

with

K ≡
[

g2M2
P

6ξ2

√

λ

2
X(tj)

]1/3

=

[

ω
g2

2
√

6

MPX(tj)

ξ

]1/3

. (A.12)
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Then, for small τ eq. (A.2) takes the form

d2Φk

dτ2
+ (κ2 + |τ |)Φk = 0 , (A.13)

which can be readily solved analytically in terms of the Airy functions. Matching the

solution with the asymptotic form (A.6) at t = tj one gets (see Appendix D for details)

Dk = e2i( 2
3
κ3+ π

4 ) i
[

Ai′(−κ2)Bi(−κ2) − Ai(−κ2)Bi′(−κ2)
]

(Bi(−κ2) + iAi(−κ2))(Bi′(−κ2) + iAi′(−κ2))
, (A.14)

Rk = e2i( 2
3
κ3+ π

4 ) −Ai′(−κ2)Ai(−κ2) − Bi(−κ2)Bi′(−κ2)

(Bi(−κ2) + iAi(−κ2))(Bi′(−κ2) + iAi′(−κ2))
. (A.15)

Thus, we can calculate the occupation number nj
k
≡ |βj

k
|2 at the moment tj

nj+1
k

=
|Rk|2
|Dk|2

+
1 + |Rk|2
|Dk|2

nj
k

+ 2

√

1 + nj
k

√

nj
k

|Rk|
|Dk|2

cos(θjtot) , (A.16)

θjtot = −2θj
k
− 2

(

2

3
κ3 +

π

4

)

+ argαj
k
− arg βj

k
. (A.17)
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Figure 5: Particle creation coefficients for (3.16), and the effective resonance exponent parameter

(A.23). The right plot is in the log-log scale, to show κ−6 and κ−3 behaviour at large momenta.

The total particle number density for tj < t < tj+1 is given by

n(tj < t < tj+1) =

∫

d3k

(2πa)3
nj

k
. (A.18)

A.2 Non-resonance production

In this case, we estimate the production of the particles simply by the first term in (A.16)

(only one degree of freedom of W boson is accounted for)

dn

dt
=
ω

π

∫

d3k

(2π)3
|Rk|2
|Dk|2

≈ A

2π3
ωK3 , (A.19)
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with the numeric coefficient A = 0.0455. The spectrum of the created particles is presented

in figure 5. It has cutoff at |k|/a ∼ K and power law tail |k|−6. Thus, at X > Xcr the

produced particles are nonrelativistic, as far as K <
√

〈m2
W 〉. So, to study the transition

to the radiation domination one should analyse further the W boson decays into relativistic

particles, which is done in the next subsection.

Let us also note, that taking into account three polarizations of the vector bosons and

their different types is made as follows

nW+ = nW− = 3n , nZ =
3

cos2 θW
n , (A.20)

where θW is the weak mixing angle, and nW± , nZ are densities for W± and Z-bosons,

respectively.

A.3 Stochastic resonance

If the occupation numbers nk exceed one, then the first term in (A.16) can be neglected,

and the last two terms, proportional to nk, yield the resonance — an exponentially rapid

particle creation. If nk ≫ 1 and the shift in the phase, ∆θ, is large, then we can neglect

the first term in (A.16) and write approximately

nj+1
k

≃ nj
k
e2πµj

k avg . (A.21)

The average growth exponent µk avg is obtained by averaging of the exponent over the

random phase

µj
k avg ≡ µavg

( |k|
K(tj)a(tj)

)

=

∫ 2π

0

dθ

2π

1

2π
log

(

1 + |Rk|2
|Dk|2

+ 2
|Rk|
|Dk|2

cos(θ)

)

, (A.22)

The integral can be found exactly, leading to

µavg(κ) =
− log(|Dk|2)

2π
, (A.23)

which is presented in figure 5.

If we neglect the expansion of the Universe, then the time derivative of the total particle

number can be estimated as

dn

dt
=

∫

d3k

(2π)3a3
nk2ωµavg

( |k|
Ka

)

∼ 2ωBn , (A.24)

where the numerical coefficient B ∼ µavg(0) ≃ 0.045. The exact expression depends on

the exact spectrum of the generated particles, and can be omitted at our level of precision.

Note, that the same equation, describing the exponential creation, is true without any

change for nW± and nZ . The difference appears in the pre-exponential behaviour only.

Typical momentum of the produced particles is again K, so they are non-relativistic,

and analysis of their conversion into light relativistic particle is needed. It proceeds via

annihilation (scattering) and is studied in detail in Appendix B.2.
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B. W boson decays and scatterings: energy transfer into relativistic par-

ticles

B.1 W boson decays

Now let us analyse whether some processes, like decay or scattering of the W bosons, may

destroy the resonance picture described in Appendix A.1. These processes may destroy

the resonance behaviour by taking the bosons out of the resonance region in two ways:

either by transferring the energy to other particles, or by changing the boson momenta

and taking it out of the resonance region.

Changing momentum could be expected in WW → WW scatterings. However, as the

typical W boson momentum is smaller than their mass K < 〈mW 〉, one can not achieve

in scatterings momenta larger than K, and this process (though rather effective) can be

safely neglected.

So, the two remaining processes are decay and annihilation of the W bosons, which

transfer the energy to the relativistic (light) particles, and, depending on their rate, may

also prevent the development of parametric resonance.

We start with the analysis of the decay process of the gauge bosons created at the

moment tj. The (average) decay width of the SM gauge boson is given by (3.20). We also

estimate the W boson mass as the averaged value over inflaton oscillations,

〈m2
W 〉 =

g2

2
√

6

MP 〈|χ|〉
ξ

= 2αWXcrX , (B.1)

where 〈|χ|〉 = 2X(t)
π . If the decay is faster than the exponent of the stochastic parametric

resonance 2ωB (see (3.19)), then the parametric resonance never settles, and creation is

dominated by the first term in (A.16), see section A.2. The inequality Γ > 2ωB leads to

(3.21). So, for the period before (3.21) the production happens only due to the first term

in (3.16). Let us check, that the energy in the decay products of the W bosons remains

small for this period.

During the time period (3.21), when the decay is fast, the creation of the particles is

non-resonant (3.18). We can write the approximate Boltzmann equation for this period

d

dt

(

a3n
)

= a3

(

A

2π3
ωK3 − Γn

)

. (B.2)

The solution to this equation in the semi-stationary regime, corresponding to vanishing

time derivative in the left-hand side, is

ndecay ≃ AωK3

2π3Γ
. (B.3)

The semi-stationary approximation |ṅ|, 3Hn ≪ Γn, is valid for X < 4αW

λ (0.8αW )2ξ2Xcr ≈
0.7 × 105Xcr, that is always after the end of inflation.

We can also check, that the occupation numbers nk are really much smaller than one

and we are in the non-resonant regime (3.18). As far as the typical physical momenta of

the W bosons are of the order of K we have

nk ∼ ndecay

K3
=

√
Xcr A

√
λ

4π3 √αW (0.8αW )
√
X

≈ 0.06

(

λ

0.25

)1/2
√

Xcr

X
, (B.4)
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which is much smaller than one for all interesting X.

The energy during this stage is converted to the SM particles produced in W boson

decays. They are light and relativistic, and typical energy transferred to them in each decay

is of the order
√

〈m2
W 〉, as far as the W bosons are non-relativistic. Thus, we can write the

Boltzmann equation in the expanding Universe for the energy density in the relativistic

SM particles as

d

dt

(

a4ρ
)

≃ a4

(

6 +
3

cos3 θW

)

√

〈m2
W 〉ndecayΓ (B.5)

≃ a4

(

6 +
3

cos3 θW

)

√

〈m2
W 〉AωK

3

2π3
,

where the coefficient
(

6 + 3
cos3 θW

)

accounts both for the different number and masses of

created W±- and Z-bosons (see eq. (A.20)). The solution is saturated by late time and

reads

ρ =

(

6 +
3

cos3 θW

)

√

〈m2
W 〉AωK

3

2π3

6

13
t . (B.6)

This reaches the inflaton energy density ρ ∼ ρinf (3.7) at

X ≃
(

6 +
3

cos3 θW

)2/3 4 · 3 2
3 ξ

2
3 Xcr A

2
3 αW

13
2
3 π

4
3 λ

1
3

≈ 5.8Xcr , (B.7)

that is much later than the end of the non-resonant creation period (3.21). We conclude,

that the energy drain by W boson decays is irrelevant during the non-resonant inflaton

decay.

B.2 W bosons annihilation

Self scattering of the W bosons, like WW → WW is of little interest for us, as far as it does

not take the bosons out of the stochastic resonance zone (the bosons are non-relativistic,

so after scattering they retain their small momenta).

It is easy to check, that for the W boson number density (B.3) saturated by the boson

decays (discussed in Appendix B.1), during the period (3.21) of non-resonant inflaton

decay the annihilation to fermions is negligible, σn2
decay < Γndecay (relation formally holds

for X > 0.1Xcr).

The scattering proceeds much more actively at larger particle densities, so the rel-

evant production mechanism is given by the stochastic resonance (3.19). Thus, we can

approximate the effective Boltzmann equation for the W boson particle number as

d

dt

(

a3nW
)

= a3
(

2BωnW − σn2
W

)

, (B.8)

where nW = nW+ = nW− . Its approximate solution (3.23) is obtained, again, by setting the

derivative in the left-hand side to zero. This is true for d(a3nscatter)/dt ≪ a32Bωnscatter,

that is forX ≪ 4BξXcr ≈ 4×103Xcr, while we are interested in much smaller X. We should

check of course, that the particle density is not to small, to allow for stochastic resonance

to work. Again, for the typical occupation number (up to some numerical factor) we get

nk ∼ nscatter

K3
=

2B

5π2 α2
W

≈ 3.4 . (B.9)
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This is larger, than one, thus we may hope that exponential creation is already a reasonable

approximation for (A.16). The energy drain is obtain if we recall that the W bosons are

nonrelativistic, so each scattering provides the energy transfer of 2
√

〈m2
W 〉, leading to

(3.24). The solution of (3.24) is also saturated at late times, so (if the initial time is small)

we have

ρ =
96 ξ X

7
2
crB2

√
X

√
λ

65π
√
αW

≈ 73

(

λ

0.25

)

√

X7
crX . (B.10)

One can see, that it reaches inflaton energy density ρ ∼ ρinf (3.7) at

X ∼ 16 6
2
3 ξ

2
3 B

4
3

65
2
3 π

2
3 α

1
3
W λ

1
3

Xcr ≈ 110Xcr . (B.11)

This is earlier, than the end of the non-resonant production region (3.21). Taking into

account Z bosons makes this process even more active. This means, that after the moment

(3.21), the parametric resonance starts, and due to higher concentration of the gauge

bosons, the energy is rapidly transferred into relativistic SM fermions via gauge boson

annihilation. So, we expect that the transfer of the energy to the relativistic modes via the

gauge bosons completes by approximately (3.21).

C. Non-resonant Higgs production on the nonlinearities of the potential

for small χ

One needs to analyse the production of particles by (3.14), but with the mass

m2 (t) =

{

ω2 for X cos [ωt] > ω√
3λ
,

3λX2 cos2 [ωt] for X cos [ωt] < ω√
3λ
.

(C.1)

One way to find the generation by this source is to use the method described in section

A.1. The adiabatic approximation holds while the mass does not change, and close to

the moments tj the problem can be solved after replacing the cosine with the quadratic

function. Alternatively, if the number of generated particles is small, a simpler perturbative

approach can be used. We use the perturbative approach here.

Let us first neglect the expansion of the Universe during several oscillations of the

inflaton field. In this case the number of particle of the mass ω generated by the quadratic

potential

Lint =
m2 (t) − ω2

2
(δχ)2 ,

is given by

nk (t) =

∣

∣

∣

∣

1

2k0

∫ t

0
dt
(

m2 (t) − ω2
)

e2ik0t

∣

∣

∣

∣

2

,

where k2
0 = k2 + ω2. The integral is equal to (for the moment of time around t ∼ tl = 2π

ω l,

l = 1, 2, . . . ; the integral value changes while the inflaton field crosses zero, but the exact

form is not important)

nk (tl) =
1

16

sin2
(

2lπk0ω

)

sin2
(

πk0
ω

) L2 ,
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where

L =
3λX2

2
· ω
k0

{

1

k0 + ω
sin

[

4π

(

k0

ω
+ 1

)

ǫ

]

− 1

k0 − ω
sin

[

4π

(

k0

ω
− 1

)

ǫ

]}

, (C.2)

and the parameter ǫ is defined from the equation

sin [2πǫ] ≡ ω√
3λX

. (C.3)

At large times, t ≫ ω−1, using the equality limt→∞
sin2 xt
πx2t = δ (x) one gets

nk (t)

t
≃ ω2

4π2
π

∞
∑

l=1

L2δ (k0 − ωl) .

Thus, integration over momenta gives a convergent sum

n (t)

t
=

9λ2X4

25π3

∞
∑

l=2

1

l2

√

1 − 1

l2
·
(

1

l + 1
sin [4π (l + 1) ǫ] − 1

l − 1
sin [4π (l − 1) ǫ]

)2

. (C.4)

The sum is saturated for 4πnǫ ≃ 1. This implies the typical energy of the produced

particles,

E ∼ ω

4πǫ
∼ 1

2

√
3λX ,

which is larger, than ω, so the particles are relativistic.

Using formulas from Appendix E we get the following estimates for the production

rate

ṅ ≃ n (t)

t
≃ 4πω4

15π3

ω√
3λX

,

and for the energy flux

ρ̇ ≃ ρ (t)

t
≃ ω5

2π3
.

Reintroducing the expansion of the Universe in the usual way by changing ṅ → d(a3n)
a3dt ,

ρ̇→ d(a4ρ)
a4dt

, we have the number and energy densities at late time

n =
4πω4

15π3

ω

4

t√
3λX(t)

, (C.5)

ρ =
3

11

ω5

2π3
t . (C.6)

D. Tunnelling through a −|x| barrier

The solution of eq. (A.13) is given by the Airy functions for negative and positive times:

Φk(τ < 0) = A− Ai(τ − κ2) +B− Bi(τ − κ2) , (D.1)

Φk(τ > 0) = A+ Ai(−τ − κ2) +B+ Bi(−τ − κ2) . (D.2)

– 33 –



The coefficients should be determined by the matching conditions at τ = 0

Φk(0−) = Φk(0+) , Φ′
k(0−) = Φ′

k(0+) . (D.3)

It is comfortable, however, firstly to match the coefficients A±, B± with α = αj
k
e−iθ

j
k ,

β = βj
k
e+iθj

k , α′ = αj+1
k

e−iθ
j
k , and β′ = βj+1

k
eiθ

j
k from the expansion (A.6). The asymptotic

expansions of the Airy functions are

Ai(−x) =
1√
πx1/4

sin

(

2

3
x3/2 +

π

4

)

, (D.4)

Bi(−x) =
1√
πx1/4

cos

(

2

3
x3/2 +

π

4

)

. (D.5)

Then, the solution matched with (A.6) at large τ (for matching one should use in (A.6)

only linear part of the mass, mW (t) ≃ const ·|t− tj|)

Φk(τ < 0) =

√

π

2

[

αe−i(
2
3
κ3+ π

4
) + βei(

2
3
κ3+ π

4
)
]

Bi(τ − κ2)+ (D.6)

+ i

√

π

2

[

αe−i(
2
3
κ3+ π

4
) − βei(

2
3
κ3+ π

4
)
]

Ai(τ − κ2) ,

Φk(τ > 0) =

√

π

2

[

α′ei(
2
3
κ3+ π

4
) + β′e−i(

2
3
κ3+ π

4
)
]

Bi(−τ − κ2)+ (D.7)

+ i

√

π

2

[

−α′ei(
2
3
κ3+ π

4
) + β′e−i(

2
3
κ3+ π

4
)
]

Ai(−τ − κ2) .

Using the linear relations between α, β, α′, β′ from condition at zero (D.3), and the

definition of Rk, Dk from (A.7), which is

α′ = α
1

Dk

+ β
R∗

k

D∗
k

, (D.8)

β′ = α
Rk

Dk

+ β
1

D∗
k

, (D.9)

one gets the expressions (A.14), (A.15).

E. Useful sums

In Appendix C we obtain the following sums

S1 =
∞
∑

l=2

1

l2

√

1 − 1

l2
·
(

1

l + 1
sin [4π (l + 1) ǫ] − 1

l − 1
sin [4π (l − 1) ǫ]

)2

, (E.1)

S2 =
∞
∑

l=2

1

l

√

1 − 1

l2
·
(

1

l + 1
sin [4π (l + 1) ǫ] − 1

l − 1
sin [4π (l − 1) ǫ]

)2

, (E.2)

where ǫ is a small dimensionless parameter, ǫ≪ 1. These sums are saturated at l ∼ 1/4πǫ,

hence to get the leading order results in ǫ one can replace these sums with corresponding
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integrals by introducing a new variable u as u = 4πlǫ, du = 4πǫ. Then to the leading order

in ǫ one arrives at

S1 =

∫ ∞

0
ǫ5
du

u6
(2u cos u− 2 sin u)2 =

4π

15
(4πǫ)5 , (E.3)

S2 =

∫ ∞

0
ǫ4
du

u5
(2u cos u− 2 sin u)2 = (4πǫ)4 . (E.4)

F. Nonresonant particle production with h and |h| sources

Here we compare production of fermions by h and |h| sources and conclude, that the

corresponding production rates are the same, though the spectra differ.

As far as the number of the created particles is small, nk ≪ 1, we can use the pertur-

bation theory. Then, the perturbation

Ĥint ≡
∫

d3xm (t) Ψ̄Ψ

leads to the number density at the moment t

nk (t) =

∫ t

0
m
(

t′
)

e2ik0t′dt′
∫ t

0
m
(

t′′
)

e−2ik0t′′dt′′ .

and total particle number

n(t) =

∫

d3k

(2π)3
nk(t) .

Here we calculate the particle density side by side for two different sources

m(t) = m sin(ωt) , (F.1)

m(t) = |m sin(ωt)| , (F.2)

and massless fields Ψ̄, Ψ, so k0 = k. One can check that for n = 0, 1, . . .

∫

2π(n+ 1
2)

ω

2πn
ω

dt sin (ωt) e2ikt = − 2ω

4k2 − ω2
· eiπk

ω cos

(

kπ

ω

)

· ei 4πkn
ω , (F.3)

∫
2π(n+1)

ω

2π(n+ 1
2)

ω

dt sin (ωt) e2ikt = − 2ω

4k2 − ω2
· e3iπk

ω cos

(

kπ

ω

)

· ei 4πkn
ω . (F.4)

Hence for the full (n+ 1)th period

∫
2π(n+1)

ω

2πn
ω

dt sin (ωt) e2ikt =
4iω

4k2 − ω2
· ei 2πk

ω cos

(

kπ

ω

)

· sin
(

kπ

ω

)

ei
4πkn

ω , (F.5)

∫
2π(n+1)

ω

2πn
ω

dt |sin (ωt)| e2ikt =
−4ω

4k2 − ω2
· ei 2πk

ω cos2

(

kπ

ω

)

· ei 4πkn
ω , (F.6)
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and summing over N + 1 periods one arrives at

∫
2π(N+1)

ω

0
dt sin(ωt) e2ik0t =

4iω

4k2 − ω2
· ei

2πk(N+1)
ω · cos

(

kπ

ω

)

· sin
(

kπ

ω

)

·
sin
(

2πk(N+1)
ω

)

sin
(

2πk
ω

) ,

(F.7)

∫
2π(N+1)

ω

0
dt |sin(ωt)| e2ik0t =

4iω

4k2 − ω2
· ei

2πk(N+1)
ω · cos2

(

kπ

ω

)

·
sin
(

2πk(N+1)
ω

)

sin
(

2πk
ω

) .

(F.8)

Hence the number of produced particles for N + 1 periods of oscillations is

n

(

t =
2π (N + 1)

ω

)

=
m2

2π2

∫

dk
16ω2k2

(4k2 − ω2)2
cos2

(

kπ

ω

)

· sin2

(

kπ

ω

) sin2
(

2πk(N+1)
ω

)

sin2
(

2πk
ω

) ,

(F.9)

n

(

t =
2π (N + 1)

ω

)

=
m2

2π2

∫

dk
16ω2k2

(4k2 − ω2)2
cos4

(

kπ

ω

)

·
sin2

(

2πk(N+1)
ω

)

sin2
(

2πk
ω

) . (F.10)

Assuming that a tiny amount of particles is produced per each period one can turn to

continuous variable T in these expressions. To obtain the particle production rate we are

interested in linear in T contribution. It comes from poles in the integrands. Having this

in mind and making use of the relation

lim
t→∞

sin2 αt

πtα2
= δ (α) , (F.11)

one proceeds with calculations. For the source (F.1) one makes use of the identity

sin2

(

2πk (N + 1)

ω

)

= sin2
((

k − ω

2

)

t
)

,

while for the source (F.2):

sin2

(

2πk (N + 1)

ω

)

= sin2 (kT ) .

Then for the first source one obtains

n (t) =
m2

2π2

∫

dk k2

(

k + ω
2

)2

ω2

4

sin2 (Tk)
(

k − ω
2

)2

and with help of (F.11)

n (t) = t
m2

2π2

∫

dk πk2

(

k + ω
2

)2

ω2

4
δ
(

k − ω

2

)

.

This is the monochromatic spectrum. The number of produced particles is

n (t) = t · m
2ω2

32π
.
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For the second source (F.2) one has

n (t) =
m2

2π2

∫

dk k2

(

k + ω
2

)2

ω2

4

cos2
(

kπ
ω

)

(

k − ω
2

)2

sin2 (Tk)

sin2
(

kπ
ω

) .

Here the double-pole at k = ω/2 is cancelled by the double-zero from cosine squared. But

there are a lot of poles due to sine in the denominator. In this case the useful variant of

(F.11) is

lim
t→∞

sin2 (tk)

πt sin2
(

kπ
ω

) =
ω2

π2
δ (k) .

It gives for the spectra

n (t) = t
m2

2π2
· ω

2

π

∫

dk k2

(

k + ω
2

)2

ω2

4

∑

n δ (k − ωn)
(

k − ω
2

)2

Finally, integrating over momenta and summing up the series

n=∞
∑

n=0

n2

(

n2 − 1
4

)2 =
π2

4

one gets

n (t) = t · m
2ω2

32π
,

the same answer as for the first source (F.1).
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