1,918 research outputs found
Remnants from Gamma-Ray Bursts
We model the intermediate time evolution of a "jetted" gamma-ray burst by two
blobs of matter colliding with the interstellar medium. We follow the
hydrodynamical evolution of this system numerically and calculate the
bremsstrahlung and synchrotron images of the remnant. We find that for a burst
energy of erg the remnant becomes spherical after years
when it collects of interstellar mass. This result is
independent of the exact details of the GRB, such as the opening angle. After
this time a gamma-ray burst remnant has an expanding sphere morphology. The
similarity to a supernova remnant makes it difficult distinguish between the
two at this stage. The expected number of non-spherical gamma-ray burst
remnants is per galaxy for a beaming factor of 0.01 and a burst
energy of erg. Our results suggest that that the double-shell object
DEM L 316 is not a GRB remnant.Comment: 16 pages, 9 figures, Substantial revisions, Accepted by Ap
Is the Hyporheic Zone Relevant beyond the Scientific Community?
Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors. View Full-Tex
XMM-Newton Spectroscopy of the Starburst Dominated Ultra Luminous Infrared Galaxy NGC 6240
We present new XMM-Newton observation of the Ultra Luminous Infrared Galaxy
(ULIRG) NGC 6240. We analyze the reflecting grating spectrometer (RGS) data,
and data from the other instruments, and find a starburst dominated 0.5-3 keV
spectrum with global properties resembling those observed in M82 but with a
much higher luminosity. We show that the starburst region can be divided into
an outer zone, beyond a radius of about 2.1 kpc, with a gas temperature of
about 10^7 K and a central region with temperatures in the range (2-6) x 10^7
K. The gas in the outer region emits most of the observed Oviii Lyman-alpha
line and the gas in the inner region the emission lines of higher ionization
ions, including a strong Fexxv line. We also identify a small inner part, very
close to the active nuclei, with typical Seyfert 2 properties including a large
amount of photoionized gas producing a strong Fe K-alpha 6.4 keV line. The
combined abundance, temperature and emission measure analysis indicates super
solar Ne/O, Mg/O, Si/O, S/O and possibly also Fe/O. The analysis suggests
densities in the range of (0.07-0.28) x epsilon^(-1/2) cm^(-3) and a total
thermal gas mass of about 4 x 10^8 x epsilon^(1/2) solar masses, where epsilon
is the volume filling factor. We used a simple model to argue that a massive
starburst with an age of about 2 x 10^7 years can explain most of the observed
properties of the source. NGC 6240 is perhaps the clearest case of an X-ray
bright luminous AGN, in a merger, whose soft X-ray spectrum is dominated by a
powerful starburst.Comment: 10 pages, 6 diagrams, accepted by ApJ, added a few minor change
Dipolar Bose-Einstein condensates with dipole-dependent scattering length
We consider a Bose-Einstein condensate of polar molecules in a harmonic trap,
where the effective dipole may be tuned by an external field. We demonstrate
that taking into account the dependence of the scattering length on the dipole
moment is essential to reproducing the correct energies and for predicting the
stability of the condensate. We do this by comparing Gross-Pitaevskii
calculations with diffusion Monte Carlo calculations. We find very good
agreement between the results obtained by these two approaches once the dipole
dependence of the scattering length is taken into account. We also examine the
behavior of the condensate in non-isotropic traps
Foundations for Intrusion Prevention
We propose an infrastructure that helps a system administrator to identify
a newly published vulnerability on the site hosts and to evaluate the vulnerability’s
threat with respect to the administrator’s security priorities. The infrastructure foundation
is the vulnerability semantics, a small set of attributes for vulnerability definition.
We demonstrate that with a few attributes it is possible to define the majority of the
known vulnerabilities in a way that (i) facilitates their accurate identification, and (ii)
enables the administrator to rank the vulnerabilities found according to the organization’s
security priorities. A large scale experiment demonstrates that our infrastructure
can find significant vulnerabilities even in a site with a high security awareness
Asymptotic behavior of the Kleinberg model
We study Kleinberg navigation (the search of a target in a d-dimensional
lattice, where each site is connected to one other random site at distance r,
with probability proportional to r^{-a}) by means of an exact master equation
for the process. We show that the asymptotic scaling behavior for the delivery
time T to a target at distance L scales as (ln L)^2 when a=d, and otherwise as
L^x, with x=(d-a)/(d+1-a) for ad+1. These
values of x exceed the rigorous lower-bounds established by Kleinberg. We also
address the situation where there is a finite probability for the message to
get lost along its way and find short delivery times (conditioned upon arrival)
for a wide range of a's
- …
