115 research outputs found

    Topotactic and reconstructive changes at high pressures and temperatures from Cs-natrolite to Cs-hexacelsian

    Get PDF
    Synchrotron X-ray powder diffraction experiments have been performed on dehydrated Csexchanged natrolite to systematically investigate successive transitions under high pressures and temperatures. At pressures above 0.5(1) GPa using H2O as a pressure-transmitting medium and after heating to 100 \ub0C, dehydrated Cs16Al16Si24O80 (deh-Cs-NAT) transforms to a hydrated phase Cs16Al16Si24O80\ub716H2O (Cs-NAT-II), which has a ca. 13.9% larger unit-cell volume. Further compression and heating to 1.5 GPa and 145 \ub0C results in the transformation of Cs-NAT-II to Cs16Al16Si32O96 (anh-Cs-POL), a H2O-free pollucite-like triclinic phase with a 15.6% smaller unit-cell volume per 80 framework oxygen atoms (80Of). At pressures and temperatures of 3.7 GPa and 180 \ub0C, a new phase Cs1.547Al1.548Si6.452O16 (Cs-HEX) with a hexacelsian framework forms, which has a ca. 1.8% smaller unit-cell volume per 80Of. This phase can be recovered after pressure release. The structure of the recovered Cs-HEX has been refined in space group P63/mcm with a = 5.3731(2) \uc5 and c = 16.6834(8) \uc5, and also been confirmed by HAADF-STEM real space imaging. Similar to the hexacelsian feldspar (i.e., BaAl2Si2O8), Cs-HEX contains Cs+ cations that act as bridges between the upper and lower layers composed of tetrahedra and are hexa-coordinated to the upper and lower 6-membered ring windows. These pressure-and temperature-induced reactions from a zeolite to a feldspar-like material are important constraints for the design of materials for Cs+ immobilization in nuclear waste disposal

    Pressure-Induced Amorphization of Small Pore Zeolites-the Role of Cation-H2O Topology and Anti-glass Formation

    Get PDF
    Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li+, Na+, K+, Rb+, Cs+ allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NAT(II)) in closer proximity to the aluminosilicate framework. We show that NAT(I) materials have a lower onset pressure of PIA than the NAT(II) materials containing Rb and Cs as EFC. The onset pressure of amorphization (P-A) of NAT(II) materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P-1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P-2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced-this opens a new way to form anti-glass structuresopen

    Non-Markovian gain and luminescence of an InGaN-AlInGaN quantum-well with many-body effects

    No full text

    Rigid unit modes in s

    No full text

    Aerosols, clouds and climate

    No full text
    corecore