857 research outputs found
Recommended from our members
Degradation of contaminants of emerging concern by UV/H2O2 for water reuse: Kinetics, mechanisms, and cytotoxicity analysis.
Advanced oxidation using UV and hydrogen peroxide (UV/H2O2) has been widely applied to degrade contaminants of emerging concern (CECs) in wastewater for water reuse. This study investigated the degradation kinetics of mixed CECs by UV/H2O2 under variable H2O2 doses, including bisphenol A, estrone, diclofenac, ibuprofen, and triclosan. Reverse osmosis (RO) treated water samples from Orange County Water District's Groundwater Replenishment System (GWRS) potable reuse project were collected on different dates and utilized as reaction matrices with spiked additions of chemicals (CECs and H2O2) to assess the application of UV/H2O2. Possible degradation pathways of selected CECs were proposed based on high resolution mass spectrometry identification of transformation products (TPs). Toxicity assessments included cytotoxicity, aryl hydrocarbon receptor-binding activity, and estrogen receptor-binding activity, in order to evaluate potential environmental impacts resulting from CEC degradation by UV/H2O2. Cytotoxicity and estrogenic activity were significantly reduced during the degradation of mixed CECs in Milli-Q water by UV/H2O2 with high UV fluence (3200Â mJÂ cm-2). However, in GWRS RO-treated water samples collected in April 2017, the cytotoxicity and estrogen activity of spiked CEC-mixture after UV/H2O2 treatment were not significantly eliminated; this might be due to the high concentration of target CEC and their TPs, which was possibly affected by the varied quality of the secondary treatment influent at this facility such as sewer-shed and wastewater discharges. This study aimed to provide insight on the impacts of post-UV/H2O2 CECs and TPs on human and ecological health at cellular level
Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes.
BackgroundMahi-mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi-mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi-mahi from the zygote stage to adult has been described.ResultsA comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development.ConclusionRemarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm-water, active Teleost fishes
New obstructions to symplectic embeddings
In this paper we establish new restrictions on symplectic embeddings of
certain convex domains into symplectic vector spaces. These restrictions are
stronger than those implied by the Ekeland-Hofer capacities. By refining an
embedding technique due to Guth, we also show that they are sharp.Comment: 80 pages, 3 figures, v2: improved exposition and minor corrections,
v3: Final version, expanded and improved exposition and minor corrections.
The final publication is available at link.springer.co
Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis
CCAAT/enhancer binding protein alpha (CEBPA) mutations in AML are associated with favourable prognosis and are divided into N- and C-terminal mutations. The majority of AML patients have both types of mutations. We assessed the prognostic significance of single (n=7) and double (n=12) CEBPA mutations among 224 AML patients. Double CEBPA mutations conferred a decisively favourable overall (P=0.006) and disease-free survival (P=0.013). However, clinical outcome of patients with single CEBPA mutations was not different from CEBPA wild-type patients. In a multivariable analysis, only double – but not single – CEBPA mutations were identified as independent prognostic factors. These findings indicate heterogeneity within AML patients with CEBPA mutations
Predictive value of DNA methylation patterns in AML patients treated with an azacytidine containing induction regimen
BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induction regimen. RESULTS: A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When evaluated in the non-azacytidine containing group, the AUC was 0.76. CONCLUSIONS: Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification of informative methylation changes. We also compared the informative content and discriminatory power of regions and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being enriched at distinct loci rather than evenly distribution across the genome. Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, response prediction may become even more complicated
A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1)
Acute myeloid leukemia with mutated NPM1 gene and aberrant cytoplasmic expression of nucleophosmin (NPMc+acute myeloid leukemia) shows distinctive biological and clinical features. Experimental evidence of the oncogenic potential of the nucleophosmin mutant is, however, still lacking, and it is unclear whether other genetic lesion(s), e.g. FLT3 internal tandem duplication, cooperate with NPM1 mutations in acute myeloid leukemia development. An analysis of age-specific incidence, together with mathematical modeling of acute myeloid leukemia epidemiology, can help to uncover the number of genetic events needed to cause leukemia. We collected data on age at diagnosis of acute myeloid leukemia patients from five European Centers in Germany, The Netherlands and Italy, and determined the age-specific incidence of AML with mutated NPM1 (a total of 1,444 cases) for each country. Linear regression of the curves representing age-specific rates of diagnosis per year showed similar slopes of about 4 on a double logarithmic scale. We then adapted a previously designed mathematical model of hematopoietic tumorigenesis to analyze the age incidence of acute myeloid leukemia with mutated NPM1 and found that a one-mutation model can explain the incidence curve of this leukemia entity. This model fits with the hypothesis that NPMc+acute myeloid leukemia arises from an NPM1 mutation with haploinsufficiency of the wild-type NPM1 allele
Analogue peptides for the immunotherapy of human acute myeloid leukemia
Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies
- …