883 research outputs found

    Critical velocity of a mobile impurity in one-dimensional quantum liquids

    Full text link
    We study the notion of superfluid critical velocity in one spatial dimension. It is shown that for heavy impurities with mass MM exceeding a critical mass McM_\mathrm{c}, the dispersion develops periodic metastable branches resulting in dramatic changes of dynamics in the presence of an external driving force. In contrast to smooth Bloch Oscillations for M<McM<M_\mathrm{c}, a heavy impurity climbs metastable branches until it reaches a branch termination point or undergoes a random tunneling event, both leading to an abrupt change in velocity and an energy loss. This is predicted to lead to a non-analytic dependence of the impurity drift velocity on small forces.Comment: 5 pages, 2 figures; New version with Supplemental Material (3 pages, 6 figures); Accepted to PR

    Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures

    Full text link
    We investigate the formation of a new type of composite topological excitation -- the skyrmion-vortex pair (SVP) -- in hybrid systems consisting of coupled ferromagnetic and superconducting layers. Spin-orbit interaction in the superconductor mediates a magnetoelectric coupling between the vortex and the skyrmion, with a sign (attractive or repulsive) that depends on the topological indices of the constituents. We determine the conditions under which a bound SVP is formed, and characterize the range and depth of the effective binding potential through analytical estimates and numerical simulations. Furthermore, we develop a semiclassical description of the coupled skyrmion-vortex dynamics and discuss how SVPs can be controlled by applied spin currents.Comment: Final version accepted by Physical Review Letters; 9 pages, 5 figure

    Neutral Plasma Oscillations at Zero Temperature

    Full text link
    We use cold plasma theory to calculate the response of an ultracold neutral plasma to an applied rf field. The free oscillation of the system has a continuous spectrum and an associated damped quasimode. We show that this quasimode dominates the driven response. We use this model to simulate plasma oscillations in an expanding ultracold neutral plasma, providing insights into the assumptions used to interpret experimental data [Phys. Rev. Lett. 85, 318 (2000)].Comment: 4.3 pages, including 3 figure

    Numerical Simulation of Vortex Crystals and Merging in N-Point Vortex Systems with Circular Boundary

    Full text link
    In two-dimensional (2D) inviscid incompressible flow, low background vorticity distribution accelerates intense vortices (clumps) to merge each other and to array in the symmetric pattern which is called ``vortex crystals''; they are observed in the experiments on pure electron plasma and the simulations of Euler fluid. Vortex merger is thought to be a result of negative ``temperature'' introduced by L. Onsager. Slight difference in the initial distribution from this leads to ``vortex crystals''. We study these phenomena by examining N-point vortex systems governed by the Hamilton equations of motion. First, we study a three-point vortex system without background distribution. It is known that a N-point vortex system with boundary exhibits chaotic behavior for N\geq 3. In order to investigate the properties of the phase space structure of this three-point vortex system with circular boundary, we examine the Poincar\'e plot of this system. Then we show that topology of the Poincar\'e plot of this system drastically changes when the parameters, which are concerned with the sign of ``temperature'', are varied. Next, we introduce a formula for energy spectrum of a N-point vortex system with circular boundary. Further, carrying out numerical computation, we reproduce a vortex crystal and a vortex merger in a few hundred point vortices system. We confirm that the energy of vortices is transferred from the clumps to the background in the course of vortex crystallization. In the vortex merging process, we numerically calculate the energy spectrum introduced above and confirm that it behaves as k^{-\alpha},(\alpha\approx 2.2-2.8) at the region 10^0<k<10^1 after the merging.Comment: 30 pages, 11 figures. to be published in Journal of Physical Society of Japan Vol.74 No.

    Planck Scale Symmetry Breaking and Majoron Physics

    Full text link
    Majoron models provide neutrino masses via the spontaneous breaking of a global U(1)U(1) symmetry. However, it may be argued that all global symmetries will be explicitly violated by gravitational effects. We show that it is possible to preserve most of the usual features of majoron models by invoking U(1)BLU(1)_{B-L} to be a gauge symmetry and adding a second singlet scalar field. The majoron gets a small model dependent mass. The couplings of majorons to neutrinos may be of ordinary strength or may be made arbitrarily weak. We discuss the cosmological and astrophysical consequences of majoron models in the context of a model dependent majoron mass and neutrino coupling. For an appropriate choice of parameters majorons can play the role of dark matter.Comment: 30 pages, UM-TH-92-3

    Neutrinoless Double Beta Decay in Supersymmetric Seesaw model

    Full text link
    Inspired by the recent HEIDELBERG-MOSCOW double beta decay experiment, we discuss the neutrinoless double beta decay in the supersymmetric seesaw model. Our numerical analysis indicates that we can naturally explain the data of the observed neutrinoless double beta decay, as well as that of the solar and atmospheric neutrino experiments with at least one Majorana-like sneutrino of middle energy scale in the model.Comment: latex, 25 pages, include 5 figures, final version in Phys. Rev.

    Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field

    Full text link
    We have performed numerical simulations on a pure electron plasma system under a strong magnetic field, in order to examine quasi-stationary states that the system eventually evolves into. We use ring states as the initial states, changing the width, and find that the system evolves into a vortex crystal state from a thinner-ring state while a state with a single-peaked density distribution is obtained from a thicker-ring initial state. For those quasi-stationary states, density distribution and macroscopic observables are defined on the basis of a coarse-grained density field. We compare our results with experiments and some statistical theories, which include the Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and the minimum enstrophy state. From some of those initial states, we obtain the quasi-stationary states which are close to the minimum enstrophy state, but we also find that the quasi-stationary states depend upon initial states, even if the initial states have the same energy and angular momentum, which means the ergodicity does not hold.Comment: 9 pages, 7 figure

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    Quantum flutter of supersonic particles in one-dimensional quantum liquids

    Full text link
    The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the most puzzling phenomena and challenging problems in condensed matter physics. Here we report on essentially exact results on the time evolution of an impurity injected at a finite velocity into a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the correlation hole around a particle in a strongly coupled many-body quantum system, and find that the resulting correlated state does not come to a complete stop but reaches a steady state which propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an intuitive physical picture of these intriguing discoveries, and propose an experimental setup where this physics can be realized and probed directly.Comment: 13 pages, 9 figure

    University-community engagement: The Fresno story of targeted neighborhood revitalization

    Get PDF
    In this article we take a closer look at a developing university-community engagement project being undertaken between California State University, Fresno, and the City of Fresno. A history of the project is provided, along with a review of the relevant literature and a summary of what pieces of the puzzle we feel should be in place for a successful collaboration of this sort. These include what structures should be institutionalized for successful collaboration at the university, in the partnering organizations, and in the community
    corecore