62 research outputs found

    Evaluation of non-intrusive flow measurement techniques for a re-entry flight experiment

    Get PDF
    This study evaluates various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle orbiter or a similar reentry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser-Induced Fluorescence) light scattering, electron-beam fluorescence, thermal emission, and mass spectroscopy. Flow-field properties were taken from a nonequilibrium flow model by Shinn, Moss, and Simmonds at the NASA Langley Research Center. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques

    The role of surface generated radicals in catalytic combustion

    Get PDF
    Experiments were conducted to better understand the role of catalytic surface reactions in determining the ignition characteristics of practical catalytic combustors. Hydrocarbon concentrations, carbon monoxide and carbon dioxide concentrations, hydroxyl radical concentrations, and gas temperature were measured at the exit of a platinum coated, stacked plate, catalytic combustor during the ignition of lean propane-air mixtures. The substrate temperature profile was also measured during the ignition transient. Ignition was initiated by suddenly turning on the fuel and the time to reach steady state was of the order of 10 minutes. The gas phase reaction, showed no pronounced effect due to the catalytic surface reactions, except the absence of a hydroxyl radical overshoot. It is found that the transient ignition measurements are valuable in understanding the steady state performance characteristics

    Bolometric and non-bolometric radio frequency detection in a metallic single-walled carbon nanotube

    Full text link
    We characterize radio frequency detection in a high-quality metallic single-walled carbon nanotube. At a bath temperature of 77 K, only bolometric (thermal) detection is seen. At a bath temperature of 4.2 K and low bias current, the response is due instead to the electrical nonlinearity of the non-ohmic contacts. At higher bias currents, the contacts recover ohmic behavior and the observed response agrees well with the calculated bolometric responsivity. The bolometric response is expected to operate at terahertz frequencies, and we discuss some of the practical issues associated with developing high frequency detectors based on carbon nanotubes.Comment: 11 pages (double-spaced), 3 figure

    Laser induced spark ignition of methane-oxygen mixtures

    Get PDF
    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed

    Coupling of Transport and Chemical Processes in Catalytic Combustion

    Get PDF
    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics

    Energy resolution of terahertz single-photon-sensitive bolometric detectors

    Get PDF
    We report measurements of the energy resolution of ultra-sensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 terahertz, near the predicted value due to intrinsic thermal fluctuation noise.Comment: 11 pages (double-spaced), 5 figures; minor revision

    The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors

    Get PDF
    Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors

    Niobium superconducting nanowire single-photon detectors

    Full text link
    We investigate the performance of superconducting nanowire photon detectors fabricated from ultra-thin Nb. A direct comparison is made between these detectors and similar nanowire detectors fabricated from NbN. We find that Nb detectors are significantly more susceptible than NbN to thermal instability (latching) at high bias. We show that the devices can be stabilized by reducing the input resistance of the readout. Nb detectors optimized in this way are shown to have approximately 2/3 the reset time of similar large-active-area NbN detectors of the same geometry, with approximately 6% detection efficiency for single photons at 470 nm

    The effects of turbulence on droplet drag and secondary droplet breakup

    Get PDF
    The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized
    • …
    corecore