1,247 research outputs found
Quantitative analysis of pedestrian counterflow in a cellular automaton model
Pedestrian dynamics exhibits various collective phenomena. Here we study
bidirectional pedestrian flow in a floor field cellular automaton model. Under
certain conditions, lane formation is observed. Although it has often been
studied qualitatively, e.g., as a test for the realism of a model, there are
almost no quantitative results, neither empirically nor theoretically. As basis
for a quantitative analysis we introduce an order parameter which is adopted
from the analysis of colloidal suspensions. This allows to determine a phase
diagram for the system where four different states (free flow, disorder, lanes,
gridlock) can be distinguished. Although the number of lanes formed is
fluctuating, lanes are characterized by a typical density. It is found that the
basic floor field model overestimates the tendency towards a gridlock compared
to experimental bounds. Therefore an anticipation mechanism is introduced which
reduces the jamming probability.Comment: 11 pages, 12 figures, accepted for publication in Phys. Rev.
Evaporation of alpha particles from P nucleus
The energy spectra of alpha particles have been measured in coincidence with
the evaporation residues for the decay of the compound nucleus P produced
in the reaction F (96 MeV) + C. The data have been compared with the
predictions of the statistical model code CASCADE. It has been observed that
significant deformation effect in the compound nucleus need to be considered in
order to explain the shape of the evaporated alpha particle energy spectra.Comment: 4 pages, 3 figures, revtex, epsf styl
Sub-Riemannian Geometry and Time Optimal Control of Three Spin Systems: Quantum Gates and Coherence Transfer
Many coherence transfer experiments in Nuclear Magnetic Resonance
Spectroscopy, involving network of coupled spins, use temporary spin-decoupling
to produce desired effective Hamiltonians. In this paper, we show that
significant time can be saved in producing an effective Hamiltonian, if
spin-decoupling is avoided. We provide time optimal pulse sequences for
producing an important class of effective Hamiltonians in three spin networks.
These effective Hamiltonians are useful for coherence transfer experiments and
implementation of quantum logic gates in NMR quantum computing. It is
demonstrated that computing these time optimal pulse sequences can be reduced
to geometric problems that involve computing sub-Riemannian geodesics on
Homogeneous spaces
Optimal Control of Quantum Dissipative Dynamics: Analytic solution for cooling the three level system
We study the problem of optimal control of dissipative quantum dynamics.
Although under most circumstances dissipation leads to an increase in entropy
(or a decrease in purity) of the system, there is an important class of
problems for which dissipation with external control can decrease the entropy
(or increase the purity) of the system. An important example is laser cooling.
In such systems, there is an interplay of the Hamiltonian part of the dynamics,
which is controllable and the dissipative part of the dynamics, which is
uncontrollable. The strategy is to control the Hamiltonian portion of the
evolution in such a way that the dissipation causes the purity of the system to
increase rather than decrease. The goal of this paper is to find the strategy
that leads to maximal purity at the final time. Under the assumption that
Hamiltonian control is complete and arbitrarily fast, we provide a general
framework by which to calculate optimal cooling strategies. These assumptions
lead to a great simplification, in which the control problem can be
reformulated in terms of the spectrum of eigenvalues of , rather than
itself. By combining this formulation with the Hamilton-Jacobi-Bellman
theorem we are able to obtain an equation for the globaly optimal cooling
strategy in terms of the spectrum of the density matrix. For the three-level
system, we provide a complete analytic solution for the optimal
cooling strategy. For this system it is found that the optimal strategy does
not exploit system coherences and is a 'greedy' strategy, in which the purity
is increased maximally at each instant.Comment: 9 pages, 3 fig
Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system
In this paper, we study time-optimal control problems related to system of
two coupled qubits where the time scales involved in performing unitary
transformations on each qubit are significantly different. In particular, we
address the case where unitary transformations produced by evolutions of the
coupling take much longer time as compared to the time required to produce
unitary transformations on the first qubit but much shorter time as compared to
the time to produce unitary transformations on the second qubit. We present a
canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1),
which is natural in understanding the time-optimal control problem of such a
coupled qubit system with significantly different time scales. A typical
setting involves dynamics of a coupled electron-nuclear spin system in pulsed
electron paramagnetic resonance experiments at high fields. Using the proposed
canonical decomposition, we give time-optimal control algorithms to synthesize
various unitary transformations of interest in coherent spectroscopy and
quantum information processing.Comment: 8 pages, 3 figure
Astrophysical S_{17}(0) factor from a measurement of d(7Be,8B)n reaction at E_{c.m.} = 4.5 MeV
Angular distribution measurements of H(Be,Be)H and
H(Be,B) reactions at ~4.5 MeV were performed to
extract the astrophysical factor using the asymptotic normalization
coefficient (ANC) method. For this purpose a pure, low emittance Be beam
was separated from the primary Li beam by a recoil mass spectrometer
operated in a novel mode. A beam stopper at 0 allowed the use of a
higher Be beam intensity. Measurement of the elastic scattering in the
entrance channel using kinematic coincidence, facilitated the determination of
the optical model parameters needed for the analysis of the transfer data. The
present measurement significantly reduces errors in the extracted
Be(p,) cross section using the ANC method. We get
~(0)~=~20.7~~2.4 eV~b.Comment: 15 pages including 3 eps figures, one figure removed and discussions
updated. Version to appear in Physical Review
Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains
Experiments in coherent nuclear and electron magnetic resonance, and optical
spectroscopy correspond to control of quantum mechanical ensembles, guiding
them from initial to final target states by unitary transformations. The
control inputs (pulse sequences) that accomplish these unitary transformations
should take as little time as possible so as to minimize the effects of
relaxation and decoherence and to optimize the sensitivity of the experiments.
Here we give efficient syntheses of various unitary transformations on Ising
spin chains of arbitrary length. The efficient realization of the unitary
transformations presented here is obtained by computing geodesics on a sphere
under a special metric. We show that contrary to the conventional belief, it is
possible to propagate a spin order along an Ising spin chain with coupling
strength J (in units of Hz), significantly faster than 1/(2J) per step. The
methods presented here are expected to be useful for immediate and future
applications involving control of spin dynamics in coherent spectroscopy and
quantum information processing
Time Optimal Control in Spin Systems
In this paper, we study the design of pulse sequences for NMR spectroscopy as
a problem of time optimal control of the unitary propagator. Radio frequency
pulses are used in coherent spectroscopy to implement a unitary transfer of
state. Pulse sequences that accomplish a desired transfer should be as short as
possible in order to minimize the effects of relaxation and to optimize the
sensitivity of the experiments. Here, we give an analytical characterization of
such time optimal pulse sequences applicable to coherence transfer experiments
in multiple-spin systems. We have adopted a general mathematical formulation,
and present many of our results in this setting, mindful of the fact that new
structures in optimal pulse design are constantly arising. Moreover, the
general proofs are no more difficult than the specific problems of current
interest. From a general control theory perspective, the problems we want to
study have the following character. Suppose we are given a controllable right
invariant system on a compact Lie group, what is the minimum time required to
steer the system from some initial point to a specified final point? In NMR
spectroscopy and quantum computing, this translates to, what is the minimum
time required to produce a unitary propagator? We also give an analytical
characterization of maximum achievable transfer in a given time for the two
spin system.Comment: 20 Pages, 3 figure
The Fundamental Diagram of Pedestrian Movement Revisited
The empirical relation between density and velocity of pedestrian movement is
not completely analyzed, particularly with regard to the `microscopic' causes
which determine the relation at medium and high densities. The simplest system
for the investigation of this dependency is the normal movement of pedestrians
along a line (single-file movement). This article presents experimental results
for this system under laboratory conditions and discusses the following
observations: The data show a linear relation between the velocity and the
inverse of the density, which can be regarded as the required length of one
pedestrian to move. Furthermore we compare the results for the single-file
movement with literature data for the movement in a plane. This comparison
shows an unexpected conformance between the fundamental diagrams, indicating
that lateral interference has negligible influence on the velocity-density
relation at the density domain . In addition we test a
procedure for automatic recording of pedestrian flow characteristics. We
present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure
- …
