138,839 research outputs found

    Temporoparietal encoding of space and time during vestibular-guided orientation

    Get PDF
    When we walk in our environment, we readily determine our travelled distance and location using visual cues. In the dark, estimating travelled distance uses a combination of somatosensory and vestibular (i.e., inertial) cues. The observed inability of patients with complete peripheral vestibular failure to update their angular travelled distance during active or passive turns in the dark implies a privileged role for vestibular cues during human angular orientation. As vestibular signals only provide inertial cues of self-motion (e.g., velocity, °/s), the brain must convert motion information to distance information (a process called 'path integration') to maintain our spatial orientation during self-motion in the dark. It is unknown, however, what brain areas are involved in converting vestibular-motion signals to those that enable such vestibular-spatial orientation. Hence, using voxel-based lesion-symptom mapping techniques, we explored the effect of acute right hemisphere lesions in 18 patients on perceived angular position, velocity and motion duration during whole-body angular rotations in the dark. First, compared to healthy controls' spatial orientation performance, we found that of the 18 acute stroke patients tested, only the four patients with damage to the temporoparietal junction showed impaired spatial orientation performance for leftward (contralesional) compared to rightward (ipsilesional) rotations. Second, only patients with temporoparietal junction damage showed a congruent underestimation in both their travelled distance (perceived as shorter) and motion duration (perceived as briefer) for leftward compared to rightward rotations. All 18 lesion patients tested showed normal self-motion perception. These data suggest that the cerebral cortical regions mediating vestibular-motion ('am I moving?') and vestibular-spatial perception ('where am I?') are distinct. Furthermore, the congruent contralesional deficit in time (motion duration) and position perception, seen only in temporoparietal junction patients, may reflect a common neural substrate in the temporoparietal junction that mediates the encoding of motion duration and travelled distance during vestibular-guided navigation. Alternatively, the deficits in timing and spatial orientation with temporoparietal junction lesions could be functionally linked, implying that the temporoparietal junction may act as a cortical temporal integrator, combining estimates of self-motion velocity over time to derive an estimate of travelled distance. This intriguing possibility predicts that timing abnormalities could lead to spatial disorientation

    On design of robust fault detection filter in finite-frequency domain with regional pole assignment

    Get PDF
    This brief is concerned with the fault detection (FD) filter design problem for an uncertain linear discrete-time system in the finite-frequency domain with regional pole assignment. An optimized FD filter is designed such that: 1) the FD dynamics is quadratically D-stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H--norm. With the aid of the generalized Kalman-Yakubovich-Popov lemma, the mixed H--/H∞ performance and the D-stability requirement are guaranteed by solving a convex optimization problem. An iterative algorithm for designing the desired FD filter is proposed by evaluating the threshold on the generated residual function. A simulation result is exploited to illustrate the effectiveness of the proposed design technique.This work was supported in part by the Deanship of Scientific Research (DSR) at King Abdulaziz University in Saudi Arabia under Grant 16-135- 35-HiCi, the National Natural Science Foundation of China under Grants 61134009 and 61203139, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    The kinetic MC modelling of reversible pattern formation in initial stages of thin metallic film growth on crystalline substrates

    Get PDF
    The results of kinetic MC simulations of the reversible pattern formation during the adsorption of mobile metal atoms on crystalline substrates are discussed. Pattern formation, simulated for submonolayer metal coverage, is characterized in terms of the joint correlation functions for a spatial distribution of adsorbed atoms. A wide range of situations, from the almost irreversible to strongly reversible regimes, is simulated. We demonstrate that the patterns obtained are defined by a key dimensionless parameter: the ratio of the mutual attraction energy between atoms to the substrate temperature. Our ab initio calculations for the nearest Ag-Ag adsorbate atom interaction on an MgO substrate give an attraction energy as large as 1.6 eV, close to that in a free molecule. This is in contrast to the small Ag adhesion and migration energies (0.23 and 0.05 eV, respectively) on a defect-free MgO substrate. (C) 2003 Elsevier Science Ltd. All rights reserved

    First principles simulations of 2D Cu superlattices on the MgO(001) surface

    Get PDF
    First principles slab simulations of copper 2D superlattices of different densities on the perfect MgO(0 0 1) surface are performed using the DFT method as implemented into the CRYSTAL98 computer code. In order to clarify the nature of interfacial bonding, we consider regular 1/4, 1/2 and I monolayer (ML) coverages and compare results of our calculations with various experimental and theoretical data. Our general conclusion is that the physical adhesion associated with a Cu polarization and charge redistribution gives the predominant contribution to the bonding of the regular Cu 2D layer on the MgO(0 0 1) surface. (C) 2003 Elsevier B.V. All rights reserved

    Can Machines Think in Radio Language?

    Full text link
    People can think in auditory, visual and tactile forms of language, so can machines principally. But is it possible for them to think in radio language? According to a first principle presented for general intelligence, i.e. the principle of language's relativity, the answer may give an exceptional solution for robot astronauts to talk with each other in space exploration.Comment: 4 pages, 1 figur

    Plasmonic lenses for tunable ultrafast electron emitters at the nanoscale

    Get PDF
    Simultaneous spatiotemporal confinement of energetic electron pulses to femtosecond and nanometer scales is a topic of great interest in the scientific community, given the potential impact of such developments across a wide spectrum of scientific and industrial applications. For example, in ultrafast electron scattering, nanoscale probes would enable accurate maps of structural dynamics in materials with nanoscale heterogeneity, thereby leading to an understanding of the role of boundaries and defects on macroscopic properties. On the other hand, advances in this field are mostly limited by the brightness and size of the electron source. We present the design, fabrication, and optical characterization of bullseye plasmonic lenses for next-generation ultrafast electron sources. Using electromagnetic simulations, we examine how the interplay between light-plasmon coupling, plasmon propagation, dispersion, and resonance governs the properties of the photoemitted electron pulse. We also illustrate how the pulse duration and strength can be tuned by geometric design and predict that sub-10-fs pulses with nanoscale diameter can be achieved. We then fabricate lenses in gold films and characterize their plasmonic properties using cathodoluminescence spectromicroscopy, demonstrating suitable plasmonic behavior for ultrafast nanoscale photoemission

    Physiological and clinical consequences of relief of right ventricular outflow tract obstruction late after repair of congenital heart defects.

    Get PDF
    BACKGROUND: Right ventricular outflow tract obstruction (RVOTO) is a common problem after repair of congenital heart disease. Percutaneous pulmonary valve implantation (PPVI) can treat this condition without consequent pulmonary regurgitation or cardiopulmonary bypass. Our aim was to investigate the clinical and physiological response to relieving RVOTO. METHODS AND RESULTS: We studied 18 patients who underwent PPVI for RVOTO (72% male, median age 20 years) from a total of 93 who had this procedure for various indications. All had a right ventricular outflow tract (RVOT) gradient >50 mm Hg on echocardiography without important pulmonary regurgitation (less than mild or regurgitant fraction <10% on magnetic resonance imaging [MRI]). Cardiopulmonary exercise testing, tissue Doppler echocardiography, and MRI were performed before and within 50 days of PPVI. PPVI reduced RVOT gradient (51.4 to 21.7 mm Hg, P<0.001) and right ventricular systolic pressure (72.8 to 47.3 mm Hg, P<0.001) at catheterization. Symptoms and aerobic (25.7 to 28.9 mL.kg(-1).min(-1), P=0.002) and anaerobic (14.4 to 16.2 mL.kg(-1).min(-1), P=0.002) exercise capacity improved. Myocardial systolic velocity improved acutely (tricuspid 4.8 to 5.3 cm/s, P=0.05; mitral 4.7 to 5.5 cm/s, P=0.01), whereas isovolumic acceleration was unchanged. The tricuspid annular velocity was not maintained on intermediate follow-up. Right ventricular end-diastolic volume (99.9 to 89.7 mL/m2, P<0.001) fell, whereas effective stroke volume (43.7 to 48.3 mL/m2, P=0.06) and ejection fraction (48.0% to 56.8%, P=0.01) increased. Left ventricular end-diastolic volume (72.5 to 77.4 mL/m2, P=0.145), stroke volume (45.3 to 50.6 mL/m2, P=0.02), and ejection fraction (62.6% to 65.8%, P=0.03) increased. CONCLUSIONS: PPVI relieves RVOTO, which leads to an early improvement in biventricular performance. Furthermore, it reduces symptoms and improves exercise tolerance. These findings have important implications for the management of this increasingly common condition

    Geometric analysis of noisy perturbations to nonholonomic constraints

    Full text link
    We propose two types of stochastic extensions of nonholonomic constraints for mechanical systems. Our approach relies on a stochastic extension of the Lagrange-d'Alembert framework. We consider in details the case of invariant nonholonomic systems on the group of rotations and on the special Euclidean group. Based on this, we then develop two types of stochastic deformations of the Suslov problem and study the possibility of extending to the stochastic case the preservation of some of its integrals of motion such as the Kharlamova or Clebsch-Tisserand integrals

    Simulating Auxiliary Inputs, Revisited

    Get PDF
    For any pair (X,Z)(X,Z) of correlated random variables we can think of ZZ as a randomized function of XX. Provided that ZZ is short, one can make this function computationally efficient by allowing it to be only approximately correct. In folklore this problem is known as \emph{simulating auxiliary inputs}. This idea of simulating auxiliary information turns out to be a powerful tool in computer science, finding applications in complexity theory, cryptography, pseudorandomness and zero-knowledge. In this paper we revisit this problem, achieving the following results: \begin{enumerate}[(a)] We discuss and compare efficiency of known results, finding the flaw in the best known bound claimed in the TCC'14 paper "How to Fake Auxiliary Inputs". We present a novel boosting algorithm for constructing the simulator. Our technique essentially fixes the flaw. This boosting proof is of independent interest, as it shows how to handle "negative mass" issues when constructing probability measures in descent algorithms. Our bounds are much better than bounds known so far. To make the simulator (s,ϵ)(s,\epsilon)-indistinguishable we need the complexity O(s⋅25ℓϵ−2)O\left(s\cdot 2^{5\ell}\epsilon^{-2}\right) in time/circuit size, which is better by a factor ϵ−2\epsilon^{-2} compared to previous bounds. In particular, with our technique we (finally) get meaningful provable security for the EUROCRYPT'09 leakage-resilient stream cipher instantiated with a standard 256-bit block cipher, like AES256\mathsf{AES256}.Comment: Some typos present in the previous version have been correcte

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe
    • …
    corecore