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Sunjie Zhang, Zidong Wang, Derui Ding, Huisheng Shu, Tasddayat and Abdullah M. Dobaie

Abstract—This paper is concerned with the fault detection
filter design problem for uncertain linear discrete-time system
in finite-frequency domain with regional pole assignment. A&
optimized fault detection filter is designed such that 1) thefault
detection dynamics is quadratically D-stable; 2) the effect from
the exogenous disturbance on the residual is attenuated Wit
respect to a minimized Ho.-norm; and 3) the sensitivity of the
residual to the fault is enhanced by means of a maximized{_-
norm. With the aid of the generalized Kalman-Yakubovich-Pgov
lemma, the mixed H_/H., performance and the D-stability
requirement are guaranteed by solving a convex optimizatio
problem. An iterative algorithm for designing the desired fault
detection filter is proposed by evaluating the threshold on he
generated residual function. A simulation result is expldied to
illustrate the effectiveness of the proposed design techmie.

Index Terms—Fault detection filter, regional pole assignment,
finite frequency domain, parameter uncertainties, GKYP lemma.

|. INTRODUCTION

performance [22]. So far, the mixéd_ / H., FD problem with
regional pole assignment has received little researchtaite
especially foruncertain discrete-time systems

It is quite common that the faults of a system occur in
the finite-frequency range in reality with examples inchgli
the incipient fault signal changing slowly which belonggshe
low-frequency domain. In [12], [19], the Kalman-Yakubadvic
Popov (KYP) lemma has been employed to establish the equiv-
alence between the frequency domain inequalities of afgans
function and an LMI of its state space realization. Note that
standard KYP lemma treats the frequency domain inequalitie
for the entire frequency range. Recently, the KYP lemma has
been extended in [13] to the finite-frequency band leading to
the so-called generalized KYP (GKYP) lemma, where an LMI
characterization of the frequency domain inequalitiesnitdi
frequency ranges has been provided to facilitate the design
of the performance index over the chosen finite or infinite
frequency ranges. The FD problem has been thoroughly inves-

Over the past few decades, the fault detection (FD) problafgated in [6], [16] in finite frequency domain for networked

has been drawing an increasing research interest, see.g.dontrol systems with or without missing measurements, eher
[18]. In particular, thef. index has been used for evaluatinghe notion of finite frequency stochasti¢_ index has been
the disturbance attenuation level of the residuals andthe jntroduced to measure the sensitivity of the residuals [1],
index has been recognized for measuring the sensitivity @, [8], [17]. Recently, in [22], a multi-constrained fdul

the faults. In [4], the mixed?_/H,, FD problem has been estimation observer with finite frequency specifications ha

and unknown bounded disturbances. The residual robustnesgp to now, the mixedH_/H,, fault detection filtering

and fault sensitivity conditions have been derived in [13jrohlem for uncertain system has been preliminarily stiidie
for the H_/H. FD problem via linear matrix inequalities ine filter design problems with regional poles placemenehav
(LMIs). On the other hand, it is well known that the dynamicgained particular research attention and the GKYP lemma
of a linear system is closely related to the location of it®po provides an LMI characterization of frequency domain in-
[7], [21]. Clearly, for the system governing the FD dynamicgqualities in the finite-frequency domain. To this end, a

if its poles are assigned within a specified region, then $he dseemingly natural research problem arises as follows: én th
namics of the detection error would have the expected &absifinjte-frequency domain, can we design a mixéd /H
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fault detection filter for uncertain linear discrete-timgss
tems with regional pole placement? This filter design issue
actually implies four performance indices: 1) the distumE
attenuation requirement through guarantékd index; 2) the
sensitivity requirement to the residuals through guasshié
index; 3) the transient behavior of the dynamics of the fault
detection error through the regional pole assignment; gnd 4
the performance robustness against parameter uncesggainti
Unfortunately, such a research problem has not gained ade-
guate research attention yet despite its significant eeging
practice, and this constitutes our main motivation.

The main contributions of this paper can be highlighted
as follows: 1) the mixedH_/H,, fault detection filtering
problem for discrete-time uncertain system is investigate
by accommodating the quadratie-stability, the disturbance
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attenuation as well as the sensitivity to faults; 2) a swdfici L and M, the LMI region D defined in (4) can be used to
condition ensuring the quadratio-stability is established in represent many kinds of popular pole regions, such as disk,
virtue of the projection lemma; and 3) the GKYP lemma igertical strips, horizontal strips, conic sector, etc.
introduced to derive existence conditions for the desifezt$i _ . .

Notation: For a matrix M, MT, M* and M~ refer to Def|tn|:)|:)n_f1. II['7t] Th? systgnw(le) - Alg.c(k.) %sald o be
its transpose, complex conjugate transpose and orthogoﬁé?a e if all its poles (eigenvalues o) lie in D.

complements, respectively. The Hermitian part of a squamfinition 2. [7] System (3) is said to be quadratically-

matrix M is denoted by He\M/) = M + M*. The symbol stable if there exists a symmetric positive definite malfix
® denotes the Kronecker product, and diag} stands for a sych that the following matrix inequality
block-diagonal matrix.

LROX+M@(X(Ac+AA))+MT® ((Ac+AA)TX) <0

Il. PROBLEM FORMULATION AND PRELIMINARIES (5)
Consider the following uncertain discrete-time system: 1S trué where the LMI regiorD is defined in (4).
z(k+1) =(A+ AA)z(k) + Dyw(k) + G1 f (k) Remark 1. It has been revealed in [7] that, if (5) is satisfied,
y(k) =Cx(k) + Dow(k) + Ga f (k) @ then all poles of the uncertain time-invariant matrx + A A,

are constrained to lie within the specified LMI regidh
where (k) € R™ is the state vectory(k) € R" is the
measured outputz(k) € R® is the output signal to be
estimatedyv(k) is the noise input which belongs 1,0, o)
with known frequency range, ant{k) € R! is the fault to be
detectedA, C, D1, Do, E, G1 andG» are known real matrices
with appropriate dimensionsAA is a perturbation matrix
representing the parameter uncertainty satisiing= HAB
where H and B are known constant matrices am is
an unknown matrix subject tdA” A < I. Without loss of
generality, we taker(0) = 0.

Let the fault detection filter be of the following form:

(k+1) =Az(k) + K(y(k) — Ci(k)) _ _
r(k) =N(y(k) — Ci(k)) @ 1Gru(@)lls = sup{omax(Gru(e”))} < v, ¥I0] < 61

i (6)
2(k) =B (k) whereon,ax(-) denotes the largest singular value (ef, and
where #(k) € R" is the estimated stateyk) € R! is the ~, > 0 is made as small as possible in the feasibility of (6)

residual signalz(k) € R® is an estimate for(k), and K and so as to minimize the effect from the exogenous disturbance

For the plant model (1) and the fault detection filter (2) with
a given LMI regionD, our objective in this paper is to design
the filter parameterg( and N such that the following three
requirements are simultaneously satisfied in the presehce o
the parameter uncertainties:

(i) All poles of the augmented system (3) are constrained
to lie inside a prescribed LMI region D, that is, (3) is
qguadraticallyD-stable.

(il) Under the zero-initial condition andl(k) = 0, the trans-
fer functionG,.,(e¢’?) = NC.(e/T—A. —AA.) ' D.+ND,
from the noise inputw(k) to the residual-(k) satisfies the
constraint [14]

N are the filter parameters to be determined. on the residual.
Defining z.(k) = [z (k), 27 (k)]T, the augmented system (iii) Under the zero-initial condition andv(k) = 0, the
from (1) and (2) can be expressed as transfer functionG, ¢ (e?%) = NC. (e’ — Ay — AA.) " *Ge +

NG, from the fault f(k) to the residualr(k) satisfies the

{ ze(k + 1) =(Ae + AAJze(k) + Dew(k) + Gef(K) o conciraint [15]

T(k) :N(Cexe(k) + DZw(k) + GQf(k))

where G ()| - = inf{omin(Grr(e?)} > 75, VIO] <6 (7)
A, = A 0 } C.=[C -] whereo,i, (-) denotes the smallest singular value(of, and
| KC A-KC |’ ’ ~r > 0 is made as large as possible in the feasibility of (7)
[ H . S0 as to enhance the sensitivity of faults on the residual.
Ade = | 0 ] A[ B0 ] = HeABe, We further adopt a residual evaluation stage including an
[ D, Gy evaluation functionJ(L) and a threshold/;, of the fol-
b= [ o] e8] | " :
| KD2 KGo lowing form: J(L) := {Zkzo rT(k)r(k:)} and Jy, =

sup;_, J(L) whereL denotes the length of the finite evaluat-
In this paper, a so-called LMI region is any subggtn the ing time-horizon. The fault is detected by using the followi
open unit disk described as follows [7], [21]: logical relation: J(L) > Jy, = the fault is detected =

D={AeC: fo()) = L+ AM +\MT < 0l (4) alarm, J(L) < Jy, = no fault.

Remark 2. The addressed filter design problem is actually
a multiobjective optimization one that can be achieved by
designing the thresholdy;,, subject tomin J;), = 27w

maxyf "

whereL and M are real matrices witd.” = L. The matrix-
valued functionfp () is called the characteristic function of
D. As explained in [21], with different choices of the matsce
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. hold, whereN = NTN.

Lemma 1. (Projection Lemma) [11] Given a symmetricproof. This lemma can be proved along the similar line of
matrix ¥ and two matriced" and A, the following inequality tnat for Theorem 1 in [6] by using Projection lemma (Lemma

M AIN RESULTS

¥ +T@AT + A®TTT < 0 is solvable with respect to the de-1) and the Generalized KYP Lemma [13]. O
cision matrix® if and only if T+ U7 < 0, ATWALT <0

Lemma 2. (S-procedure) Letf. = L7, H, A and B be real
matrices withA satisfyingATA < I. Then,L + HAB +

BTATHT < 0 if and only if there exists a positive scalar:

¢ >0 such thatL + e 'HHT + ¢BTB < 0.

A. Mixed H_/H ., Performance

The Generalized KYP Lemma provides a necessary atiérefore it would make practical sense to guarantee the
sufficient condition in terms of an LMI to ensure that thejesired quadrati®-stability for (3).
given transfer function(e’?) satisfies a desired frequency.

domain property condition. For convenience, we assume t

AA, =0.

Lemma 3. Let~,, > 0, v; > 0, I, = diag{I, — vel} e
ROHOX(n+0) T, = diag{—1, Vi) e R +x(n+t) 5 posi-

tive scalard,; and the filter gaing<, N be given. Consider the

detection error dynamics (3) with transfer functiofis,, (e’?)
and G,.;(e’?). The following statements are equivalent:
(@) | Gruo(e?”)]|e < Yoo AN| Gy (3| > 77, ¥ |0] < 61,
(b) There exist Hermitian matrice®:, Q> > 0, Q3 and
Q4 > 0 such that

B. D-stability

The mixed H_/H,, fault detection filter design problem
in Lemma 3 is actually concerned with the steady-state and
disturbance attenuation behaviors. The transient (dyceini
behavior of the detection error dynamics, on the other hand,
is equally important to ensure a fast detection process and

,Zmeorem 1. Assume that there exist a symmetric positive

definite matrixP, > 0 and a matrixF" such that
—I®(F+FT)

I®P—I®FT + MT @ (ATF)

I@P,—I®F+M®(FTA,)

MT @ (ATF)+ M @ (FTA.)+ L ® P,

holds. Then, the filtering error dynamics in (3) is quadratig
D-stable.

O3 :=
<0 (12)

Proof. First, by the properties of the Kronecker product, we
can rewrite (12) as

A, D, 1"~ [ A D. .,
I o0 | =™ 1 o0 T (F+F7)
e D, 1T NC. ND I@P,—I®FT+ (M@ A)T(I®F)
+ [ 0 12] Hw[ 0 12]<07 8) [9P,~I@F+(IoF) (Mo A,)
MeAN)TIRF)+(I®FT)(M®A.)+L® Ps
A G172 [ A G. <0 (13)
Ir o =0 Performing simple algebra operations, inequality (13)jisie-
NC. NGy 1" [ NC. NG, alent to
+ Iy 0, (9) _
0 I 0 I [ 0 I®PS]+[ I ](I@F)
T
where I®P;, L® P (M@ A.)
~Q1 Q2 <[ 1 I}-i-({ N }(I@F)[I 1})T
= T
- [ Q2 Q1 —(2cos6)Q2 ] ’ (M®A)
<0. (14)
- — —3 Q4
- { Q1 Q3 —(2c0s6,)Q4 } ' Next, it is easy to check that the null spacd-ef, (M ® A,)]"

(c) There exist Hermitian matrice&g;, Q2 > 0, Q3, Q4 > 0
and general matrixt” such that

is [(M®A.)T, I] and the null space df, I]T is [, I]. Note
that

—Q4 Qs —F ) O =L®P,+M® (P,A)+M"®(ATP,)  (15)
* Q1 — (2c0s0,)Q2 + He(FTA,) + CINC,
* * Qg :=(L—-2I)® Ps. (16)
0 .
FTD, + CTNDy | 1= 6, <0, (10) By Lemma 1, (1_4) _holds if and only i, < O_ansz < 0.
2T DETND It follows from Definition 1 that the system (3) is quadratiga
Mo 2502 D-stable. O
—Qs Qs—F Remark 3. The D-stability issue has been investigated in

% Q3 — (2cos0;)Q4 +He(FTA,) — CINC,
* *
0 —
FTGei— CTNG,
~GINGy +71

=0y <0 (11)

[1], [2], [B], [8], [17], where the projection lemma has been
utilized. In this paper, by using the same method combined
with the Kronecker product approach, the proof is preceded
in a more compact way. In comparison with the result in [7],
the obtained sufficient condition is more suitable for desig
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a stable fault detection filter in the finite frequency dom&n In this case, the uncertain filtering error dynamics (3)
the other hand, it follows from [1], [2], [13] that both Lemmais quadratically D-stable and satisfies theH., per-

2 and GKYP Lemma can be interpreted as special cases dfoamance index (6) as well as thdi_ performance
generalized version of th&-procedure. In this paper, for theindex (7) in finite frequency domain. Furthermore, if
benefits of engineering applications, the index, H., index, (Ps,Q1,Q2,Q3,Q4, F,G, N) is a feasible solution of (17),
D-stability and robustness have been introduced as indaliduthen the fault detection filter parametefs and N can be
performance constraints on the in order to facilitate thalre obtained by means of the matricés G and N, respectively,

time fault detection implementation. where N is a factorization of N (i.e., N = NTN) and
K=F;TGT.
C. Fault detection filter design Proof. Factorize the matrix\/ as M = M M,, where M;

Havi btained th vsi it .and M, have full column rank. Such a factorization can
aving obtaine € anaysis resuts, we are now In,& niained easily through the singular value decompasitio
position to solve the fault detection filter design proble SVD) technique
It can be seen from Lemma 3 that the inequality (10) I ReplaceA. in ('10) (11) and (12) withd, + H,AB,, and
still non-convex due to the product term between the filt% ¢ ' © e

gain matrix K and the slack variablé’. To overcome such write (10), (11) and (12) in the following form:

a coupling problem, we sef = B By , G = KTF, i+ HAB; + BIATH] <0, i=1,2,3. (18)
B Iy lying Lemma 2 to (18), respectively, we obtain the
and then havé” A, = FyA+GTC FgA-G'C = f |'|A\pp' o liti ’ P 4
e FQTA +GTC F3TA —_GTo |- ollowing Inequalities
A FT'D, = [DIF +D¥G,DTF, + DIG)T .= D, FTG, = O, H; ¢&BF
GTF + GG, GTFy + GEG|T ==¢G. HY —&I 0 <0,i=1,2,3. (19)
Next, the results obtained for the nominal dynamic will e:B; 0 —e;l

be extended to uncertain augmented system described in
with AA. # 0. Following Lemma 3 and Theorem 1 an
summarizing the discussions made so far, we are now re
to present our main results.

f?f)the positive definite matri®; > 0 and the positive scalar
rameters; > 0. After tedious algebraic manipulations, (19)
be transformed into (17) which can be handled directly
by the LMI optimization technique. The details of the proof
Theorem 2. Lety,, > 0 and~; > 0 be given. Assume thatare omitted here for brevity. U
there exist positive definite matricés > 0, Q2 > 0, Q4 > 0,
matricesF’, Wy, Ws, Q1, Q3, N and positive constant scalars
g; >0 (i = 1,2, 3) such that the following inequalities hold:

Remark 4. For the addressed fault detection filter design
problem, in order to maximize the sensitivity to faults and
minimize the influence from disturbances, a sub-optimalrfilt

0, H;, ;BT gain matrix X' can be determined bi = F?jTGT via solving
o' eI 01 <0, i=1,23. (17) the following optimization problem:
eBi 0 —el min _Ju, subject to(17).  (20)
H Q2>0,Q4>0,P.>0,F,G,Q1,Q3,N
where So far, we have designed the fault detection filter and it
-1 Q2—F - remains to evaluate the generated residual. For this peypos
0, = * Q1 — (2c0s6;)Q2 + He(A) + CINC. we propose an iterative algorithm for the evaluation of the
* * thresholdJy;, for the fault detection filter in finite frequency.
0 The fault detection filter design (FDFD) algorithm:
D+ CIND, , Step 1. Solve (17) (wherei = 3) for Ps > 0,F and G.
—~2T + DIND, CalculateK, by Ko = F; 'G”. Let K = K,.
-~ -~ Step 2. With K from Step 1, obtainmin -, andmax~y; by
0, — 83 Qs — (2cosb )63244— Iie(A) _CTNC solving (17) (where = 1,2), respectively.
° 3 K . e Step 3. If, with ~,, and v replaced bymin v, and max~;
respectively, (17) (wheré = 1,2) are feasible for Theorem
g C(;NG 2, then the locally optimized parameterfs and N can be
7 2 ) obtained and the job is done. Otherwise, go to Step 4.
—Gy NGz + 931 Step 4. Decreasemin-y,, by p and increasemax~; by
O — —-I®(F+FT) wherep > 0 is a sufficiently small scalar. Solve (17) with the
Pl IeP,—I@FT+ MT @ AT updatedmin v,, and max~;. Repeat such a procedure until
IQP,—IQF+M®A |Jin (i) — Jen(i — 1)] < 6 (¢ is the iteration number). In the
MTQAT+ M@ A+LQP, |’ feasibility of (17), the locally optimized filter paramesek’
and N as well as the indexnin = min-~y,,/maxys can
Hi=H,=[0 H'F 0]", Bi=B[0 B. 0], pe optained. Jon Yo/ maxyy
M ® (FTH.) Step 5. Stop.

Hg_[M1T®(FTH€)]’ By=[0 M®(Be) ].
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Remark 5. It is obvious that, the key parametetgn ~,, and
maxyy can be, respectively, obtained in Step 3 and Step 4
by fixing K. Such a strategy can guarantee the iterative result
to be always better than that obtained in last iteration dr, a
least, the same. In this case, the value/gf is monotonically
decreasing as long as the iterative process is carried out
continuously. In the iterative process, the stability domiat
(17) (wherei = 3) is always required to be satisfied, which
means that the fault detection observer is quadraticdly
stable. Nevertheless, the FDFD algorithm cannot guarantee
the optimality of the addressed multiobjective problensoAl
with the LMI solvers, the iterative process might provide
oscillations around suboptimal values and does not really
converge if certain accuracy is required. These algorithmi
issues deserve further investigations in our future restear

Fig.
IV. | LLUSTRATIVE EXAMPLE 9

Consider the system (1) with

—0.4830 —0.3478 1 [ —0.6268
0.4678  0.5242 |’ Tt 7 | 04663 |’

Gy =] —0.6628 0.7272 ], C =] 03946 —0.544 ],
E=[1 05], Dy=0.1724, G = 0.4447,
H =[0.01,0,0.02]",A = 0.4, B = [0.01,0,0.03].

6]
A =

[7

—

(8]

The poles are restricted in the intersection of the diskd]
centered at(—«,0) with radius » and the vertical strip
Re(\) < —aj, wherea = 0, r = 0.8 and oy = —0.5.
Such a pole region can be described by = D N Do,

[10]

D, = {)\ e C fDi(/\) = Li—l—/\Mi-i-;\M-T < 0},
M; = M;’Z;Mlg (Z = 1,2) whereL; = - fé,,, , My = (11]

d1ag{0,1}, M11 = [1 O], MQQ = [O 1, L2 = 20&1, MQ =
1, Moy =1, My = 1.

For the initial valuer(0) = #(0) = [0, 0, 0], the exogenous [13]
disturbance input is set as(k) = +sin(k). The frequency
domain is|f| < 6; with ; = 0.3. The fault signalf (k) is given
0.75 100 < k < 200

0 elsewhere.
algorithm, we sef: = 0.01 and§ = 0.05. The corresponding [2°!
filter gain matrices are obtained &5= [0.12401, —0.11083]7
and N = 236.43. Fig. 1 plots the generated residual signali6]
The simulation result confirms the effectiveness of the pro-
posed algorithm. [17]

[12]

[14]

as follow: f(k) = In our iterative
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