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On Design of Robust Fault Detection Filter in Finite
Frequency Domain with Regional Pole Assignment

Sunjie Zhang, Zidong Wang, Derui Ding, Huisheng Shu, Tasawar Hayat and Abdullah M. Dobaie

Abstract—This paper is concerned with the fault detection
filter design problem for uncertain linear discrete-time system
in finite-frequency domain with regional pole assignment. An
optimized fault detection filter is designed such that 1) thefault
detection dynamics is quadraticallyD-stable; 2) the effect from
the exogenous disturbance on the residual is attenuated with
respect to a minimizedH∞-norm; and 3) the sensitivity of the
residual to the fault is enhanced by means of a maximizedH−-
norm. With the aid of the generalized Kalman-Yakubovich-Popov
lemma, the mixed H−/H∞ performance and the D-stability
requirement are guaranteed by solving a convex optimization
problem. An iterative algorithm for designing the desired fault
detection filter is proposed by evaluating the threshold on the
generated residual function. A simulation result is exploited to
illustrate the effectiveness of the proposed design technique.

Index Terms—Fault detection filter, regional pole assignment,
finite frequency domain, parameter uncertainties, GKYP lemma.

I. I NTRODUCTION

Over the past few decades, the fault detection (FD) problem
has been drawing an increasing research interest, see e.g. [3],
[18]. In particular, theH∞ index has been used for evaluating
the disturbance attenuation level of the residuals and theH−

index has been recognized for measuring the sensitivity to
the faults. In [4], the mixedH−/H∞ FD problem has been
investigated for Takagi-Sugeno fuzzy model with sensor faults
and unknown bounded disturbances. The residual robustness
and fault sensitivity conditions have been derived in [15]
for the H−/H∞ FD problem via linear matrix inequalities
(LMIs). On the other hand, it is well known that the dynamics
of a linear system is closely related to the location of its poles
[7], [21]. Clearly, for the system governing the FD dynamics,
if its poles are assigned within a specified region, then the dy-
namics of the detection error would have the expected transient
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performance [22]. So far, the mixedH−/H∞ FD problem with
regional pole assignment has received little research attention
especially foruncertain discrete-time systems.

It is quite common that the faults of a system occur in
the finite-frequency range in reality with examples including
the incipient fault signal changing slowly which belongs tothe
low-frequency domain. In [12], [19], the Kalman-Yakubovich-
Popov (KYP) lemma has been employed to establish the equiv-
alence between the frequency domain inequalities of a transfer
function and an LMI of its state space realization. Note thatthe
standard KYP lemma treats the frequency domain inequalities
for the entire frequency range. Recently, the KYP lemma has
been extended in [13] to the finite-frequency band leading to
the so-called generalized KYP (GKYP) lemma, where an LMI
characterization of the frequency domain inequalities in finite
frequency ranges has been provided to facilitate the design
of the performance index over the chosen finite or infinite
frequency ranges. The FD problem has been thoroughly inves-
tigated in [6], [16] in finite frequency domain for networked
control systems with or without missing measurements, where
the notion of finite frequency stochasticH− index has been
introduced to measure the sensitivity of the residuals [1],
[2], [8], [17]. Recently, in [22], a multi-constrained fault
estimation observer with finite frequency specifications has
been researched for continuous-time systems.

Up to now, the mixedH−/H∞ fault detection filtering
problem for uncertain system has been preliminarily studied,
the filter design problems with regional poles placement have
gained particular research attention and the GKYP lemma
provides an LMI characterization of frequency domain in-
equalities in the finite-frequency domain. To this end, a
seemingly natural research problem arises as follows: in the
finite-frequency domain, can we design a mixedH−/H∞

fault detection filter for uncertain linear discrete-time sys-
tems with regional pole placement? This filter design issue
actually implies four performance indices: 1) the disturbance
attenuation requirement through guaranteedH∞ index; 2) the
sensitivity requirement to the residuals through guaranteedH−

index; 3) the transient behavior of the dynamics of the fault
detection error through the regional pole assignment; and 4)
the performance robustness against parameter uncertainties.
Unfortunately, such a research problem has not gained ade-
quate research attention yet despite its significant engineering
practice, and this constitutes our main motivation.

The main contributions of this paper can be highlighted
as follows: 1) the mixedH−/H∞ fault detection filtering
problem for discrete-time uncertain system is investigated
by accommodating the quadraticD-stability, the disturbance
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attenuation as well as the sensitivity to faults; 2) a sufficient
condition ensuring the quadraticD-stability is established in
virtue of the projection lemma; and 3) the GKYP lemma is
introduced to derive existence conditions for the desired filters.

Notation: For a matrixM , MT , M∗ and M⊥ refer to
its transpose, complex conjugate transpose and orthogonal
complements, respectively. The Hermitian part of a square
matrix M is denoted by He(M) = M + M∗. The symbol
⊗ denotes the Kronecker product, and diag{. . .} stands for a
block-diagonal matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following uncertain discrete-time system:










x(k + 1) =(A+∆A)x(k) +D1w(k) +G1f(k)

y(k) =Cx(k) +D2w(k) +G2f(k)

z(k) =Ex(k)

(1)

where x(k) ∈ Rn is the state vector,y(k) ∈ Rr is the
measured output,z(k) ∈ Rs is the output signal to be
estimated,w(k) is the noise input which belongs toL2[0,∞)
with known frequency range, andf(k) ∈ Rl is the fault to be
detected.A,C,D1, D2, E,G1 andG2 are known real matrices
with appropriate dimensions.∆A is a perturbation matrix
representing the parameter uncertainty satisfying∆A = H∆B
where H and B are known constant matrices and∆ is
an unknown matrix subject to∆T∆ ≤ I. Without loss of
generality, we takex(0) = 0.

Let the fault detection filter be of the following form:










x̂(k + 1) =Ax̂(k) +K(y(k)− Cx̂(k))

r(k) =N(y(k)− Cx̂(k))

ẑ(k) =Ex̂(k)

(2)

where x̂(k) ∈ Rn is the estimated state,r(k) ∈ Rl is the
residual signal,̂z(k) ∈ Rs is an estimate forz(k), andK and
N are the filter parameters to be determined.

Defining xe(k) = [xT (k), x̂T (k)]T , the augmented system
from (1) and (2) can be expressed as
{

xe(k + 1) =(Ae +∆Ae)xe(k) +Dew(k) +Gef(k)

r(k) =N(Cexe(k) +D2w(k) +G2f(k))
(3)

where

Ae =

[

A 0
KC A−KC

]

, Ce = [C − C],

∆Ae =

[

H
0

]

∆
[

B 0
]

:= He∆Be,

De =

[

D1

KD2

]

, Ge =

[

G1

KG2

]

.

In this paper, a so-called LMI region is any subsetD in the
open unit disk described as follows [7], [21]:

D = {λ ∈ C : fD(λ) = L+ λM + λ̄MT < 0}, (4)

whereL andM are real matrices withLT = L. The matrix-
valued functionfD(λ) is called the characteristic function of
D. As explained in [21], with different choices of the matrices

L andM , the LMI regionD defined in (4) can be used to
represent many kinds of popular pole regions, such as disk,
vertical strips, horizontal strips, conic sector, etc.

Definition 1. [7] The systemx(k+1) = Ax(k) is said to be
D-stable if all its poles (eigenvalues ofA) lie in D.

Definition 2. [7] System (3) is said to be quadraticallyD-
stable if there exists a symmetric positive definite matrixX
such that the following matrix inequality

L⊗X+M⊗ (X(Ae+∆Ae))+MT ⊗ ((Ae+∆Ae)
TX) < 0

(5)
is true where the LMI regionD is defined in (4).

Remark 1. It has been revealed in [7] that, if (5) is satisfied,
then all poles of the uncertain time-invariant matrixAe+∆Ae

are constrained to lie within the specified LMI regionD.

For the plant model (1) and the fault detection filter (2) with
a given LMI regionD, our objective in this paper is to design
the filter parametersK andN such that the following three
requirements are simultaneously satisfied in the presence of
the parameter uncertainties:

(i) All poles of the augmented system (3) are constrained
to lie inside a prescribed LMI region D, that is, (3) is
quadraticallyD-stable.

(ii) Under the zero-initial condition andf(k) = 0, the trans-
fer functionGrw(e

jθ) = NCe(e
jθI−Ae−∆Ae)

−1De+ND2

from the noise inputw(k) to the residualr(k) satisfies the
constraint [14]

‖Grw(e
jθ)‖∞ := sup{σmax(Grw(e

jθ))} < γw, ∀|θ| ≤ θl
(6)

whereσmax(·) denotes the largest singular value of(·), and
γw > 0 is made as small as possible in the feasibility of (6)
so as to minimize the effect from the exogenous disturbance
on the residual.

(iii) Under the zero-initial condition andw(k) = 0, the
transfer functionGrf (e

jθ) = NCe(e
jθI−Af −∆Ae)

−1Ge+
NG2 from the fault f(k) to the residualr(k) satisfies the
constraint [15]

‖Grf (e
jθ)‖− := inf{σmin(Grf (e

jθ))} > γf , ∀|θ| ≤ θl (7)

whereσmin(·) denotes the smallest singular value of(·), and
γf > 0 is made as large as possible in the feasibility of (7)
so as to enhance the sensitivity of faults on the residual.

We further adopt a residual evaluation stage including an
evaluation functionJ(L) and a thresholdJth of the fol-

lowing form: J(L) :=
{

∑L

k=0 r
T (k)r(k)

}
1

2

and Jth :=

supf=0 J(L) whereL denotes the length of the finite evaluat-
ing time-horizon. The fault is detected by using the following
logical relation:J(L) > Jth =⇒ the fault is detected =⇒
alarm, J(L) ≤ Jth =⇒ no fault.

Remark 2. The addressed filter design problem is actually
a multiobjective optimization one that can be achieved by
designing the thresholdJth subject tomin Jth = min γw

max γf
.
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III. M AIN RESULTS

Lemma 1. (Projection Lemma) [11] Given a symmetric
matrix Ψ and two matricesΓ andΛ, the following inequality
Ψ+ΓΦΛT +ΛΦTΓT < 0 is solvable with respect to the de-
cision matrixΦ if and only ifΓ⊥ΨΓ⊥T < 0, Λ⊥ΨΛ⊥T < 0.

Lemma 2. (S-procedure) LetL = LT , H , ∆ andB be real
matrices with∆ satisfying∆T∆ ≤ I. Then,L + H∆B +
BT∆THT < 0 if and only if there exists a positive scalar
ε > 0 such thatL+ ε−1HHT + εBTB < 0.

A. MixedH−/H∞ Performance

The Generalized KYP Lemma provides a necessary and
sufficient condition in terms of an LMI to ensure that the
given transfer functionG(ejθ) satisfies a desired frequency
domain property condition. For convenience, we assume that
∆Ae = 0.

Lemma 3. Let γw > 0, γf > 0, Πw = diag{I, − γ2
wI} ∈

R(n+t)×(n+t), Πf = diag{−I, γ2
fI} ∈ R(n+t)×(n+t), a posi-

tive scalarθf and the filter gainsK, N be given. Consider the
detection error dynamics (3) with transfer functionsGrw(e

jθ)
andGrf (e

jθ). The following statements are equivalent:
(a) ‖Grw(e

jθ)‖∞ < γw and‖Grf(e
jθ)‖− > γf , ∀ |θ| ≤ θl.

(b) There exist Hermitian matricesQ1, Q2 > 0, Q3 and
Q4 > 0 such that

[

Ae De

I 0

]T

Ξw

[

Ae De

I 0

]

+

[

NCe ND2

0 I

]T

Πw

[

NCe ND2

0 I

]

< 0, (8)

[

Ae Ge

I 0

]T

Ξf

[

Ae Ge

I 0

]

+

[

NCe NG2

0 I

]T

Πf

[

NCe NG2

0 I

]

< 0, (9)

where

Ξw =

[

−Q1 Q2

Q2 Q1 − (2 cos θl)Q2

]

,

Ξf =

[

−Q3 Q4

Q4 Q3 − (2 cos θl)Q4

]

.

(c) There exist Hermitian matricesQ1, Q2 > 0, Q3, Q4 > 0
and general matrixF such that





−Q1 Q2 − F
∗ Q1 − (2 cos θl)Q2 +He(FTAe) + CT

e N̄Ce

∗ ∗

0
FTDe + CT

e N̄D2

−γ2
wI +DT

2 N̄D2



 := Θ̄1 < 0, (10)





−Q3 Q4 − F
∗ Q3 − (2 cos θl)Q4 +He(FTAe)− CT

e N̄Ce

∗ ∗

0
FTGe − CT

e N̄G2

−GT
2 N̄G2 + γ2

fI



 := Θ̄2 < 0 (11)

hold, whereN̄ = NTN .

Proof. This lemma can be proved along the similar line of
that for Theorem 1 in [6] by using Projection lemma (Lemma
1) and the Generalized KYP Lemma [13].

B. D-stability

The mixedH−/H∞ fault detection filter design problem
in Lemma 3 is actually concerned with the steady-state and
disturbance attenuation behaviors. The transient (dynamical)
behavior of the detection error dynamics, on the other hand,
is equally important to ensure a fast detection process and
therefore it would make practical sense to guarantee the
desired quadraticD-stability for (3).

Theorem 1. Assume that there exist a symmetric positive
definite matrixPs > 0 and a matrixF such that

Θ̄3 :=

[

−I ⊗ (F + FT )
I ⊗ Ps − I ⊗ FT +MT ⊗ (AT

e F )

I ⊗ Ps − I ⊗ F +M ⊗ (FTAe)
MT ⊗ (AT

e F ) +M ⊗ (FTAe) + L⊗ Ps

]

< 0 (12)

holds. Then, the filtering error dynamics in (3) is quadratically
D-stable.

Proof. First, by the properties of the Kronecker product, we
can rewrite (12) as

[

−I ⊗ (F + FT )
I ⊗ Ps − I ⊗ FT + (M ⊗Ae)

T (I ⊗ F )

I ⊗ Ps − I ⊗ F + (I ⊗ FT )(M ⊗Ae)
(M ⊗Ae)

T (I ⊗ F ) + (I ⊗ FT )(M ⊗Ae) + L⊗ Ps

]

< 0 (13)

Performing simple algebra operations, inequality (13) is equiv-
alent to

[

0 I ⊗ Ps

I ⊗ Ps L⊗ Ps

]

+

[

−I
(M ⊗Ae)

T

]

(I ⊗ F )

×
[

I I
]

+
(

[

−I
(M ⊗Ae)

T

]

(I ⊗ F )
[

I I
]

)T

< 0. (14)

Next, it is easy to check that the null space of[−I, (M⊗Ae)]
T

is [(M⊗Ae)
T , I] and the null space of[I, I]T is [−I, I]. Note

that

Ω1 := L⊗ Ps +M ⊗ (PsAe) +MT ⊗ (AT
e Ps) (15)

Ω2 := (L− 2I)⊗ Ps. (16)

By Lemma 1, (14) holds if and only ifΩ1 < 0 andΩ2 < 0.
It follows from Definition 1 that the system (3) is quadratically
D-stable.

Remark 3. The D-stability issue has been investigated in
[1], [2], [5], [8], [17], where the projection lemma has been
utilized. In this paper, by using the same method combined
with the Kronecker product approach, the proof is preceded
in a more compact way. In comparison with the result in [7],
the obtained sufficient condition is more suitable for designing
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a stable fault detection filter in the finite frequency domain. On
the other hand, it follows from [1], [2], [13] that both Lemma
2 and GKYP Lemma can be interpreted as special cases of a
generalized version of theS-procedure. In this paper, for the
benefits of engineering applications, theH− index,H∞ index,
D-stability and robustness have been introduced as individual
performance constraints on the in order to facilitate the real-
time fault detection implementation.

C. Fault detection filter design

Having obtained the analysis results, we are now in a
position to solve the fault detection filter design problem.
It can be seen from Lemma 3 that the inequality (10) is
still non-convex due to the product term between the filter
gain matrixK and the slack variableF . To overcome such

a coupling problem, we setF =

[

F1 F2

F3 F3

]

, G = KTF3

and then haveFTAe =

[

FT
1 A+GTC FT

3 A−GTC
FT
2 A+GTC FT

3 A−GTC

]

:=

A, FTDe = [DT
1 F1+DT

2 G,DT
1 F2+DT

2 G]T := D, FTGe =
[GT

1 F1 +GT
2 G,GT

1 F2 +GT
2 G]T := G.

Next, the results obtained for the nominal dynamic will
be extended to uncertain augmented system described in (3)
with ∆Ae 6= 0. Following Lemma 3 and Theorem 1 and
summarizing the discussions made so far, we are now ready
to present our main results.

Theorem 2. Let γw > 0 and γf > 0 be given. Assume that
there exist positive definite matricesPs > 0, Q2 > 0, Q4 > 0,
matricesF , W1, W2, Q1, Q3, N̄ and positive constant scalars
εi > 0 (i = 1, 2, 3) such that the following inequalities hold:





Θi Hi εiB
T
i

HT
i −εiI 0

εiBi 0 −εiI



 < 0, i = 1, 2, 3. (17)

where

Θ1 =





−Q1 Q2 − F
∗ Q1 − (2 cos θl)Q2 +He(A) + CT

e N̄Ce

∗ ∗

0
D + CT

e N̄D2

−γ2
wI +DT

2 N̄D2



 ,

Θ2 =





−Q3 Q4 − F
∗ Q3 − (2 cos θl)Q4 +He(A) − CT

e N̄Ce

∗ ∗

0
G − CT

e N̄G2

−GT
2 N̄G2 + γ2

fI



 ,

Θ3 =

[

−I ⊗ (F + FT )
I ⊗ Ps − I ⊗ FT +MT ⊗AT

I ⊗ Ps − I ⊗ F +M ⊗A
MT ⊗AT +M ⊗A+ L⊗ Ps

]

,

H1 = H2 =
[

0 HT
e F 0

]T
, B1 = B2

[

0 Be 0
]

,

H3 =

[

MT
1 ⊗ (FTHe)

MT
1 ⊗ (FTHe)

]

, B3 =
[

0 M2 ⊗ (Be)
]

.

In this case, the uncertain filtering error dynamics (3)
is quadratically D-stable and satisfies theH∞ per-
formance index (6) as well as theH− performance
index (7) in finite frequency domain. Furthermore, if
(Ps, Q1, Q2, Q3, Q4, F,G, N̄) is a feasible solution of (17),
then the fault detection filter parametersK and N can be
obtained by means of the matricesF, G and N̄ , respectively,
where N is a factorization ofN̄ (i.e., N̄ = NTN ) and
K = F−T

3 GT .

Proof. Factorize the matrixM asM = MT
1 M2, whereM1

and M2 have full column rank. Such a factorization can
be obtained easily through the singular value decomposition
(SVD) technique.

ReplaceAe in (10), (11) and (12) withAe +He∆Be, and
rewrite (10), (11) and (12) in the following form:

Θ̄i +Hi∆Bi +BT
i ∆

THT
i < 0, i = 1, 2, 3. (18)

Applying Lemma 2 to (18), respectively, we obtain the
following inequalities





Θ̄i Hi εiB
T
i

HT
i −εiI 0

εiBi 0 −εiI



 < 0, i = 1, 2, 3. (19)

on the positive definite matrixPs > 0 and the positive scalar
parametersεi > 0. After tedious algebraic manipulations, (19)
can be transformed into (17) which can be handled directly
by the LMI optimization technique. The details of the proof
are omitted here for brevity.

Remark 4. For the addressed fault detection filter design
problem, in order to maximize the sensitivity to faults and
minimize the influence from disturbances, a sub-optimal filter
gain matrixK can be determined byK = F−T

3 GT via solving
the following optimization problem:

min
Q2>0,Q4>0,Ps>0,F,G,Q1,Q3,N̄

Jth subject to(17). (20)

So far, we have designed the fault detection filter and it
remains to evaluate the generated residual. For this purpose,
we propose an iterative algorithm for the evaluation of the
thresholdJth for the fault detection filter in finite frequency.

The fault detection filter design (FDFD) algorithm:
Step 1. Solve (17) (wherei = 3) for Ps > 0, F and G.
CalculateK0 by K0 = F−T

3 GT . Let K = K0.
Step 2. With K from Step 1, obtainmin γw andmax γf by
solving (17) (wherei = 1, 2), respectively.
Step 3. If, with γw and γf replaced bymin γw andmax γf
respectively, (17) (wherei = 1, 2) are feasible for Theorem
2, then the locally optimized parametersK and N can be
obtained and the job is done. Otherwise, go to Step 4.
Step 4. Decreasemin γw by µ and increasemax γf by µ
whereµ > 0 is a sufficiently small scalar. Solve (17) with the
updatedmin γw andmax γf . Repeat such a procedure until
|Jth(i) − Jth(i − 1)| < δ (i is the iteration number). In the
feasibility of (17), the locally optimized filter parameters K
andN as well as the indexmin Jth = min γw/max γf can
be obtained.
Step 5. Stop.
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Remark 5. It is obvious that, the key parametersmin γw and
max γf can be, respectively, obtained in Step 3 and Step 4
by fixingK. Such a strategy can guarantee the iterative result
to be always better than that obtained in last iteration or, at
least, the same. In this case, the value ofJth is monotonically
decreasing as long as the iterative process is carried out
continuously. In the iterative process, the stability constraint
(17) (wherei = 3) is always required to be satisfied, which
means that the fault detection observer is quadraticallyD-
stable. Nevertheless, the FDFD algorithm cannot guarantee
the optimality of the addressed multiobjective problem. Also,
with the LMI solvers, the iterative process might provide
oscillations around suboptimal values and does not really
converge if certain accuracy is required. These algorithmic
issues deserve further investigations in our future research.

IV. I LLUSTRATIVE EXAMPLE

Consider the system (1) with

A =

[

−0.4830 −0.3478
0.4678 0.5242

]

, D1 =

[

−0.6268
0.4663

]

,

G1 =
[

−0.6628 0.7272
]T

, C =
[

0.3946 −0.544
]

,

E =
[

1 0.5
]

, D2 = 0.1724, G2 = 0.4447,

H = [0.01, 0, 0.02]T ,∆ = 0.4, B = [0.01, 0, 0.03].

The poles are restricted in the intersection of the disk
centered at(−α, 0) with radius r and the vertical strip
Re(λ) < −α1, whereα = 0, r = 0.8 and α1 = −0.5.
Such a pole region can be described byD = D1 ∩ D2,
Di = {λ ∈ C : fDi

(λ) = Li + λMi + λ̄MT
i < 0},

Mi = MT
i1Mi2 (i = 1, 2) whereL1 =

[

−r α
α −r

]

, M1 =

diag{0, 1}, M11 = [1 0], M22 = [0 1], L2 = 2α1, M2 =
1, M21 = 1, M22 = 1.

For the initial valuex(0) = x̂(0) = [0, 0, 0]T , the exogenous
disturbance input is set asw(k) = 1

k
sin(k). The frequency

domain is|θ| ≤ θl with θl = 0.3. The fault signalf(k) is given

as follow: f(k) =

{

0.75 100 < k < 200
0 elsewhere.

In our iterative

algorithm, we setµ = 0.01 andδ = 0.05. The corresponding
filter gain matrices are obtained asK = [0.12401,−0.11083]T

andN = 236.43. Fig. 1 plots the generated residual signal.
The simulation result confirms the effectiveness of the pro-
posed algorithm.
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