82 research outputs found
Dry sliding friction and wear behavior of hybrid glass - carbon fiber reinforced PA66/PTFE composites
The tribological response and the frictional effects in dry sliding wear behaviour of hybrid Glass –Carbon composites under the action of sliding load and sliding velocity was studied. The material systems considered for the investigation were PA66/PTFE blend (80/20 wt. %), Blend(PA66/PTFE)/10 wt.% short glass fiber (SGF), Blend (PA66/PTFE)/10 wt.% short carbon fiber (SCF) and Blend (PA66/PTFE)/10 wt.% SGF/10 wt.% SCF (GC).These composites were produced using melt mixing method through extrusion and followed by injection molding. The experimentation was conducted as per ASTM G99 method. The experimentation data revealed that the significant wear resistance was exhibited by Glass-Carbon hybrid composites under the action of all the test parameters. This is attributed to the hybrid effect of fibres which may restrict the early reaching of softening point of polymers thereby preventing melting wear. Further, the formation of uniform and defined transfer polymer substrate on the steel disc surface reduced the frictional effects. Further, Blend/SCF composites were better than Blend/SGF composites. The composites studied were sensitive to applied normal load compared to velocity. The combined matrix and fiber wear were credited to the critical wear volume loss. Fiber misalignment, matrix deformation, melting wear and fiber peeling were some of the failure mechanisms observed in the morphological study of hybrid composites through SEM images
Benzoic acid and substituted benzoic acids as interfacial corrosion inhibitors for copper in HClO4
Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes
Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the “International Year of pulses”. Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes
Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution
Exploring the three body abrasive wear behavior of glass – Carbon thermoplastic hybrid composites
Dry sliding friction and wear behavior of hybrid glass - carbon fiber reinforced PA66/PTFE composites
The tribological response and the frictional effects in dry sliding wear behaviour of hybrid Glass –Carbon composites under the action of sliding load and sliding velocity was studied. The material systems considered for the investigation were PA66/PTFE blend (80/20 wt. %), Blend(PA66/PTFE)/10 wt.% short glass fiber (SGF), Blend (PA66/PTFE)/10 wt.% short carbon fiber (SCF) and Blend (PA66/PTFE)/10 wt.% SGF/10 wt.% SCF (GC).These composites were produced using melt mixing method through extrusion and followed by injection molding. The experimentation was conducted as per ASTM G99 method. The experimentation data revealed that the significant wear resistance was exhibited by Glass-Carbon hybrid composites under the action of all the test parameters. This is attributed to the hybrid effect of fibres which may restrict the early reaching of softening point of polymers thereby preventing melting wear. Further, the formation of uniform and defined transfer polymer substrate on the steel disc surface reduced the frictional effects. Further, Blend/SCF composites were better than Blend/SGF composites. The composites studied were sensitive to applied normal load compared to velocity. The combined matrix and fiber wear were credited to the critical wear volume loss. Fiber misalignment, matrix deformation, melting wear and fiber peeling were some of the failure mechanisms observed in the morphological study of hybrid composites through SEM images.</jats:p
Micro fillers effect on two body abrasive wear behavior of Polyamide 66, Polyamide 6 blend based composites
Surface treatment of jute fibre using eco-friendly method and its use in PP composites
Study on Abrasion Wear behaviour of Hybrid Composites using dimensional Analysis and Wear Models
Three Body Abrasive Wear Behavior of Glass-Basalt PA66/PTFE Hybrid Composites in Multi pass Condition
- …
