10,303 research outputs found

    Thermodynamics of nano-spheres encapsulated in virus capsids

    Full text link
    We investigate the thermodynamics of complexation of functionalized charged nano-spheres with viral proteins. The physics of this problem is governed by electrostatic interaction between the proteins and the nano-sphere cores (screened by salt ions), but also by configurational degrees of freedom of the charged protein N-tails. We approach the problem by constructing an appropriate complexation free energy functional. On the basis of both numerical and analytical studies of this functional we construct the phase diagram for the assembly which contains the information on the assembled structures that appear in the thermodynamical equilibrium, depending on the size and surface charge density of the nano-sphere cores. We show that both the nano-sphere core charge as well as its radius determine the size of the capsid that forms around the core.Comment: Submitte

    Quenched Charge Disorder and Coulomb Interactions

    Full text link
    We develop a general formalism to investigate the effect of quenched fixed charge disorder on effective electrostatic interactions between charged surfaces in a one-component (counterion-only) Coulomb fluid. Analytical results are explicitly derived for two asymptotic and complementary cases: i) mean-field or Poisson-Boltzmann limit (including Gaussian-fluctuations correction), which is valid for small electrostatic coupling, and ii) strong-coupling limit, where electrostatic correlations mediated by counterions become significantly large as, for instance, realized in systems with high-valency counterions. In the particular case of two apposed and ideally polarizable planar surfaces with equal mean surface charge, we find that the effect of the disorder is nil on the mean-field level and thus the plates repel. In the strong-coupling limit, however, the effect of charge disorder turns out to be additive in the free energy and leads to an enhanced long-range attraction between the two surfaces. We show that the equilibrium inter-plate distance between the surfaces decreases for elevated disorder strength (i.e. for increasing mean-square deviation around the mean surface charge), and eventually tends to zero, suggesting a disorder-driven collapse transition.Comment: 13 pages, 2 figure

    Dissipative Hydrodynamics and Heavy Ion Collisions

    Full text link
    Recent discussions of RHIC data emphasized the exciting possibility that the matter produced in nucleus-nucleus collisions shows properties of a near-perfect fluid. Here, we aim at delineating the applicability of fluid dynamics, which is needed to quantify the size of corresponding dissipative effects. We start from the equations for dissipative fluid dynamics, which we derive from kinetic theory up to second order (Israel-Stewart theory) in a systematic gradient expansion. In model studies, we then establish that for too early initialization of the hydrodynamic evolution (\tau_0 \lsim 1 fm/c) or for too high transverse momentum (p_T \gsim 1 GeV) in the final state, the expected dissipative corrections are too large for a fluid description to be reliable. Moreover, viscosity-induced modifications of hadronic transverse momentum spectra can be accommodated to a significant degree in an ideal fluid description by modifications of the decoupling stage. We argue that these conclusions, drawn from model studies, can also be expected to arise in significantly more complex, realistic fluid dynamics simulations of heavy ion collisions.Comment: 18 pages, 5 figures, uses revtex4; v2: references added, typos correcte

    Phonon anomalies and charge dynamics in Fe_{1-x}Cu_{x}Cr_{2}S_{4} single crystals

    Get PDF
    A detailed investigation of phonon excitations and charge carrier dynamics in single crystals of Fe_{1-x}Cu_{x}Cr_{2}S_{4} (x = 0, 0.2, 0.4, 0.5) has been performed by using infrared spectroscopy. In FeCr_{2}S_{4} the phonon eigenmodes are strongly affected by the onset of magnetic order. Despite enhanced screening effects, a continuous evolution of the phonon excitations can be observed in the doped compounds with x = 0.2 (metallic) and x = 0.4, 0.5 (bad metals), but the effect of magnetic ordering on the phonons is strongly reduced compared to x = 0. The Drude-like charge-carrier contribution to the optical conductivity in the doped samples indicates that the colossal magneto-resistance effect results from the suppression of spin-disorder scattering.Comment: 8 pages, 6 figure

    Counterion-Mediated Weak and Strong Coupling Electrostatic Interaction between Like-Charged Cylindrical Dielectrics

    Full text link
    We examine the effective counterion-mediated electrostatic interaction between two like-charged dielectric cylinders immersed in a continuous dielectric medium containing neutralizing mobile counterions. We focus on the effects of image charges induced as a result of the dielectric mismatch between the cylindrical cores and the surrounding dielectric medium and investigate the counterion-mediated electrostatic interaction between the cylinders in both limits of weak and strong electrostatic couplings (corresponding, e.g., to systems with monovalent and multivalent counterions, respectively). The results are compared with extensive Monte-Carlo simulations exhibiting good agreement with the limiting weak and strong coupling results in their respective regime of validity.Comment: 19 pages, 10 figure

    Colloids dragged through a polymer solution: experiment, theory and simulation

    Get PDF
    We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table

    The KELT-South Telescope

    Full text link
    The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26 degree by 26 degree fields around the southern sky, and targets stars in the range of 8 < V < 10 mag, searching for transits by Hot Jupiters. This paper describes the KELT-South system hardware and software and discusses the quality of the observations. We show that KELT-South is able to achieve the necessary photometric precision to detect transits of Hot Jupiters around solar-type main-sequence stars.Comment: 26 pages, 13 figure
    corecore