624 research outputs found
Testing formula satisfaction
We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from
satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size
Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs
For a graph , let be the partition function of the
monomer-dimer system defined by , where is the
number of matchings of size in . We consider graphs of bounded degree
and develop a sublinear-time algorithm for estimating at an
arbitrary value within additive error with high
probability. The query complexity of our algorithm does not depend on the size
of and is polynomial in , and we also provide a lower bound
quadratic in for this problem. This is the first analysis of a
sublinear-time approximation algorithm for a # P-complete problem. Our
approach is based on the correlation decay of the Gibbs distribution associated
with . We show that our algorithm approximates the probability
for a vertex to be covered by a matching, sampled according to this Gibbs
distribution, in a near-optimal sublinear time. We extend our results to
approximate the average size and the entropy of such a matching within an
additive error with high probability, where again the query complexity is
polynomial in and the lower bound is quadratic in .
Our algorithms are simple to implement and of practical use when dealing with
massive datasets. Our results extend to other systems where the correlation
decay is known to hold as for the independent set problem up to the critical
activity
Testing Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are
invariant under linear transformations of the Boolean cube. Previous work in
property testing, including the linearity test and the test for Reed-Muller
codes, has mostly focused on such tasks for linear properties. The one
exception is a test due to Green for "triangle freeness": a function
f:\cube^{n}\to\cube satisfies this property if do not all
equal 1, for any pair x,y\in\cube^{n}.
Here we extend this test to a more systematic study of testing for
linear-invariant non-linear properties. We consider properties that are
described by a single forbidden pattern (and its linear transformations), i.e.,
a property is given by points v_{1},...,v_{k}\in\cube^{k} and
f:\cube^{n}\to\cube satisfies the property that if for all linear maps
L:\cube^{k}\to\cube^{n} it is the case that do
not all equal 1. We show that this property is testable if the underlying
matroid specified by is a graphic matroid. This extends
Green's result to an infinite class of new properties.
Our techniques extend those of Green and in particular we establish a link
between the notion of "1-complexity linear systems" of Green and Tao, and
graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the
proceedings of STACS 200
A study of patent thickets
Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area
Sublinear Algorithms for Approximating String Compressibility
We raise the question of approximating the compressibility of a string with respect to a fixed compression scheme, in sublinear time. We study this question in detail for two popular lossless compression schemes: run-length encoding (RLE) and a variant of Lempel-Ziv (LZ77), and present sublinear algorithms for approximating compressibility with respect to both schemes. We also give several lower bounds that show that our algorithms for both schemes cannot be improved significantly.
Our investigation of LZ77 yields results whose interest goes beyond the initial questions we set out to study. In particular, we prove combinatorial structural lemmas that relate the compressibility of a string with respect to LZ77 to the number of distinct short substrings contained in it (its ℓth subword complexity , for small ℓ). In addition, we show that approximating the compressibility with respect to LZ77 is related to approximating the support size of a distribution.National Science Foundation (U.S.) (Award CCF-1065125)National Science Foundation (U.S.) (Award CCF-0728645)Marie Curie International Reintegration Grant PIRG03-GA-2008-231077Israel Science Foundation (Grant 1147/09)Israel Science Foundation (Grant 1675/09
Testing non-uniform k-wise independent distributions over product spaces (extended abstract)
A distribution D over Σ1× ⋯ ×Σ n is called (non-uniform) k-wise independent if for any set of k indices {i 1, ..., i k } and for any z1zki1ik, PrXD[Xi1Xik=z1zk]=PrXD[Xi1=z1]PrXD[Xik=zk]. We study the problem of testing (non-uniform) k-wise independent distributions over product spaces. For the uniform case we show an upper bound on the distance between a distribution D from the set of k-wise independent distributions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. Such a bound was previously known only for the binary field. For the non-uniform case, we give a new characterization of distributions being k-wise independent and further show that such a characterization is robust. These greatly generalize the results of Alon et al. [1] on uniform k-wise independence over the binary field to non-uniform k-wise independence over product spaces. Our results yield natural testing algorithms for k-wise independence with time and sample complexity sublinear in terms of the support size when k is a constant. The main technical tools employed include discrete Fourier transforms and the theory of linear systems of congruences.National Science Foundation (U.S.) (NSF grant 0514771)National Science Foundation (U.S.) (grant 0728645)National Science Foundation (U.S.) (Grant 0732334)Marie Curie International Reintegration Grants (Grant PIRG03-GA-2008-231077)Israel Science Foundation (Grant 1147/09)Israel Science Foundation (Grant 1675/09)Massachusetts Institute of Technology (Akamai Presidential Fellowship
Recommended from our members
Is There a Market for Organic Search Engine Results and Can Their Manipulation Give Rise to Antitrust Liability?
Recommended from our members
Trial Courts: An Economic Perspective
This article describes economic research on models of legal disputes. Concepts such as rational choice and static equilibrium are often used inaccurately in the noneconomic research presented in this issue. This article critiques the longitudinal studies, illustrating a number of problems of conceptualization and data analysis. Finally, the authors consider normative models of dispute resolution and the evolution and effects of judge-made law.</p
Recommended from our members
An Economic Model of Legal Discovery
Presents an economic analysis of legal discovery in the United States. Purposes of discovery; Discussion on discovery abuse and fair resolution of disputes; Policy recommendations.</p
- …
