511 research outputs found

    Kramers-like Picture for Crystal Nucleation

    Full text link
    We introduce a new scheme to analyze the kinetics of homogeneous nucleation in terms of a global order parameter. Our approach is based on the application of the internal degrees of freedom formalism to derive a kinetic equation of the Kramers type formulated for a global reaction coordinate. We provide explicit expressions for the quantities and coefficients involved in the process, suitable for simulation. In addition, our picture recovers in the quasi-stationary case the transition rate obtained from the method of reactive flux. The equation we present may provide a link between theoretical approaches to homogeneous nucleation (generally formulated in terms of a kinetic equation of the Fokker-Planck type) and simulations (which mostly employ linear response theory). In this context, our scheme provides a theoretical framework to interpret and extend the results obtained in recent simulations.Comment: 10 pages, Revtex (no Figures). To appear in J. Chem. Phy

    Nonequilibrium translational effects in evaporation and condensation

    Full text link
    This paper shows how mesoscopic nonequilibrium thermodynamics can be applied to condensation and evaporation. By extending the normal set of thermodynamic variables with two internal variables, we are able to give a new theoretical foundation for a mechanism of condensation that has been proposed from molecular simulation results. The flux does not follow a simple Arrhenius formula for small activation energies which are relevant here.Comment: To appear in J. Chem. Phy

    Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria

    Get PDF
    We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one dimensional diffusion. The validity of this approximation, being based on the assumption of an instantaneous equilibration of the particle distribution in the cross-section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.Comment: 20 pages, 7 figure

    Entropic stochastic resonance: the constructive role of the unevenness

    Full text link
    We demonstrate the existence of stochastic resonance (SR) in confined systems arising from entropy variations associated to the presence of irregular boundaries. When the motion of a Brownian particle is constrained to a region with uneven boundaries, the presence of a periodic input may give rise to a peak in the spectral amplification factor and therefore to the appearance of the SR phenomenon. We have proved that the amplification factor depends on the shape of the region through which the particle moves and that by adjusting its characteristic geometric parameters one may optimize the response of the system. The situation in which the appearance of such entropic stochastic resonance (ESR) occurs is common for small-scale systems in which confinement and noise play an prominent role. The novel mechanism found could thus constitute an important tool for the characterization of these systems and can put to use for controlling their basic properties.Comment: 8 pages, 8 figure
    corecore