3,055 research outputs found

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure

    Parameter estimation of compact binaries using the inspiral and ringdown waveforms

    Full text link
    We analyze the problem of parameter estimation for compact binary systems that could be detected by ground-based gravitational wave detectors. So far this problem has only been dealt with for the inspiral and the ringdown phases separately. In this paper, we combine the information from both signals, and we study the improvement in parameter estimation, at a fixed signal-to-noise ratio, by including the ringdown signal without making any assumption on the merger phase. The study is performed for both initial and advanced LIGO and VIRGO detectors.Comment: matching cqg versio

    Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K

    Get PDF
    The interaction between cosmic rays and the gravitational wave bar detector NAUTILUS is experimentally studied with the aluminum bar at temperature of T=1.5 K. The results are compared with those obtained in the previous runs when the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement with the thermo-acoustic model; no large signals at unexpected rate are noticed, unlike the data taken in the run at T = 0.14 K. The observations suggest a larger efficiency in the mechanism of conversion of the particle energy into vibrational mode energy when the aluminum bar is in the superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters

    Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001

    Get PDF
    We report the result from a search for bursts of gravitational waves using data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during the year 2001, for a total measuring time of 90 days. With these data we repeated the coincidence search performed on the 1998 data (which showed a small coincidence excess) applying data analysis algorithms based on known physical characteristics of the detectors. With the 2001 data a new interesting coincidence excess is found when the detectors are favorably oriented with respect to the Galactic Disk

    Particle acoustic detection in gravitational wave aluminum resonant antennas

    Get PDF
    The results on cosmic rays detected by the gravitational antenna NAUTILUS have motivated an experiment (RAP) based on a suspended cylindrical bar, which is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy electron beam. Mechanical vibrations originate from the local thermal expansion caused by warming up due to the energy lost by particles crossing the material. The aim of the experiment is to measure the amplitude of the fundamental longitudinal vibration at different temperatures. We report on the results obtained down to a temperature of about 4 K, which agree at the level of about 10% with the predictions of the model describing the underlying physical process.Comment: RAP experiment, 16 pages, 7 figure

    Measurement of mechanical vibrations excited in aluminium resonators by 0.6 GeV electrons

    Get PDF
    We present measurements of mechanical vibrations induced by 0.6 GeV electrons impinging on cylindrical and spherical aluminium resonators. To monitor the amplitude of the resonator's vibrational modes we used piezoelectric ceramic sensors, calibrated by standard accelerometers. Calculations using the thermo-acoustic conversion model, agree well with the experimental data, as demonstrated by the specific variation of the excitation strengths with the absorbed energy, and with the traversing particles' track positions. For the first longitudinal mode of the cylindrical resonator we measured a conversion factor of 7.4 +- 1.4 nm/J, confirming the model value of 10 nm/J. Also, for the spherical resonator, we found the model values for the L=2 and L=1 mode amplitudes to be consistent with our measurement. We thus have confirmed the applicability of the model, and we note that calculations based on the model have shown that next generation resonant mass gravitational wave detectors can only be expected to reach their intended ultra high sensitivity if they will be shielded by an appreciable amount of rock, where a veto detector can reduce the background of remaining impinging cosmic rays effectively.Comment: Tex-Article with epsfile, 34 pages including 13 figures and 5 tables. To be published in Rev. Scient. Instr., May 200

    All-sky upper limit for gravitational radiation from spinning neutron stars

    Full text link
    We present results of the all-sky search for gravitational-wave signals from spinning neutron stars in the data of the EXPLORER resonant bar detector. Our data analysis technique was based on the maximum likelihood detection method. We briefly describe the theoretical methods that we used in our search. The main result of our analysis is an upper limit of 2×1023{\bf 2\times10^{-23}} for the dimensionless amplitude of the continuous gravitational-wave signals coming from any direction in the sky and in the narrow frequency band from 921.00 Hz to 921.76 Hz.Comment: 12 pages, 4 figures, submitted to Proceedings of 7th Gravitational Wave Data Analysis Workshop, December 17-19, 2002, Kyoto, Japa

    Tracking and Alignment with the Silicon Strip Tracker at the CMS Magnet Test Cosmic Challenge

    Get PDF
    Data were collected with a custom-built sub-structure of the silicon strip tracker, both during the preparation of the Magnet Test Cosmic Challenge and during the challenge itself. These data were used to evaluate performance of track reconstruction and detector alignment algorithms, both with and without magnetic field. The track reconstruction algorithm is described in detail and its performance presented, in terms of its efficiency, resolution and consistency with the results from other sub-detectors. A study of detector alignment is shown, including the use tracker construction information. The effect of alignment on track quality is discussed

    Initial operation of the International Gravitational Event Collaboration

    Full text link
    The International Gravitational Event Collaboration, IGEC, is a coordinated effort by research groups operating gravitational wave detectors working towards the detection of millisecond bursts of gravitational waves. Here we report on the current IGEC resonant bar observatory, its data analysis procedures, the main properties of the first exchanged data set. Even though the available data set is not complete, in the years 1997 and 1998 up to four detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted to the International Journal of Modern Physic
    corecore