39 research outputs found

    Expression of GLUT1 and GLUT3 Glucose Transporters in Endometrial and Breast Cancers

    Get PDF
    Cancer cells have accelerated metabolism and high glucose requirements. The up-regulation of specific glucose transporters may represent a key mechanism by which malignant cells may achieve increased glucose uptake to support the high rate of glycolysis. In present study we analyzed the mRNA and protein expression of GLUT1 and GLUT3 glucose transporters by quantitative real-time polymerase chain reaction (Q-PCR) and Western blotting technique in 76 cases of endometrial carcinoma and 70 cases of breast carcinoma. SLC2A1 and SLCA2A3 mRNAs expression was found, respectively in 100% and 97.4% samples of endometrial cancers and only in 50% and 40% samples of breast cancers. In endometrial cancers GLUT1 and GLUT3 protein expression was identified in 67.1% and 30.3% of cases. Analogously, in breast cancers in 48.7% and 21% of samples, respectively. The results showed that both endometrial and breast poorly differentiated tumors (grade 2 and 3) had significantly higher GLUT1 and GLUT3 expression than well-differentiated tumors (grade 1). Statistically significant association was found between SLCA2A3 mRNA expression and estrogen and progesterone receptors status in breast cancers. GLUT1 has been reported to be involved in the uptake of glucose by endometrial and breast carcinoma cells earlier and the present study determined that GLUT3 expression is also involved. GLUT1 and GLUT3 seem to be important markers in endometrial and breast tumors differentiation

    Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death

    Get PDF
    Nutrient deprivation has been shown to cause cancer cell death. To exploit nutrient deprivation as anti-cancer therapy, we investigated the effects of the anti-metabolite 2-deoxy-D-glucose on breast cancer cells in vitro. This compound has been shown to inhibit glucose metabolism. Treatment of human breast cancer cell lines with 2-deoxy-D-glucose results in cessation of cell growth in a dose dependent manner. Cell viability as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide conversion assay and clonogenic survival are decreased with 2-deoxy-D-glucose treatment indicating that 2-deoxy-D-glucose causes breast cancer cell death. The cell death induced by 2-deoxy-D-glucose was found to be due to apoptosis as demonstrated by induction of caspase 3 activity and cleavage of poly (ADP-ribose) polymerase. Breast cancer cells treated with 2-deoxy-D-glucose express higher levels of Glut1 transporter protein as measured by Western blot analysis and have increased glucose uptake compared to non-treated breast cancer cells. From these results we conclude that 2-deoxy-D-glucose treatment causes death in human breast cancer cell lines by the activation of the apoptotic pathway. Our data suggest that breast cancer cells treated with 2-deoxy-D-glucose accelerate their own demise by initially expressing high levels of glucose transporter protein, which allows increased uptake of 2-deoxy-D-glucose, and subsequent induction of cell death. These data support the targeting of glucose metabolism as a site for chemotherapeutic intervention by agents such as 2-deoxy-D-glucose

    Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy

    Get PDF
    Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive, biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and discuss their biological significance and future translation into clinical use

    Internal (His)6-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield

    Get PDF
    Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits. A major recurring problem within group II chaperonin research, especially with the hetero-oligomeric forms, is to establish an efficient recombinant system for the expression of large amounts of wild-type as well as mutated variants. Herein we show how we can produce, in E. coli cells, unprecedented amounts of correctly assembled and active αβ-thermosome, the class II chaperonin from Thermoplasma acidophilum, by introducing a (His)6-tag within a loop in the α subunit of the complex. The specific location was identified via a rational approach and proved not to disturb the structure of the chaperonin, as demonstrated by size-exclusion chromatography, native gel electrophoresis and electron microscopy. Likewise, the tagged protein showed an ATP-ase activity and an ability to refold substrates identical to the wild type. This tagging strategy might be employed for the overexpression of other recombinant chaperonins

    Progressive increase of glucose transporter-3 (GLUT-3) expression in estrogen-induced breast carcinogenesis

    No full text
    INTRODUCTION: Increased glucose uptake and glycolysis are main metabolic characteristics of malignant cells. A family of glucose transporters (GLUTs) facilitates glucose movement across the plasma membranes in a tumor-specific manner. Glucose transporter-1 (GLUT-1), GLUT-3 and recently GLUT-12, have been previously shown in breast cancer cells and are found to be associated with poor prognosis. In addition, it has been shown that estrogen plays critical roles in GLUT regulation, however, the stage-specific GLUT regulation of mammary carcinogenesis is unclear. METHODS: GLUT expression patterns were investigated in an in vitro–in vivo progressive, estrogen-induced, mammary carcinogenesis model which consisted of four cell lines, with same genetic background. In this model, different stages of tumor initiation and progression are represented, MCF-10F being the normal stage, E2 cells the transformed stage by estrogen, C5 cells, the invasive stage, and T4 cells the tumorigenic stage. In addition, loss of ductulogenesis and solid mass formation in collagen matrix and invasiveness of the cells were counted. RESULTS: Real time PCR showed that GLUT1 expression was downregulated in MCF10F after treatment with 17β-estradiol (E2), and in the invasive cell type (C5), but not in the tumor cells (T4), which had no changes compared to MCF10F. C5 and T4 cells showed the highest rate of GLUT-3 expression. These cells were also found to be associated with loss of ductulogenesis, solid mass formation and higher invasive capacity, whereas, GLUT-12 was downregulated in C5 and T4 cells. CONCLUSION: Estrogen-induced malignant transformation is associated with remarkable and progressive GLUT-3 expression, GLUT-1 re-expression at further stages, as well as GLUT-12 downregulation
    corecore