683 research outputs found
Finite Chains with Quantum Affine Symmetries
We consider an extension of the (t-U) Hubbard model taking into account new
interactions between the numbers of up and down electrons. We confine ourselves
to a one-dimensional open chain with L sites (4^L states) and derive the
effective Hamiltonian in the strong repulsion (large U) regime. This
Hamiltonian acts on 3^L states. We show that the spectrum of the latter
Hamiltonian (not the degeneracies) coincides with the spectrum of the
anisotropic Heisenberg chain (XXZ model) in the presence of a Z field (2^L
states). The wave functions of the 3^L-state system are obtained explicitly
from those of the 2^L-state system, and the degeneracies can be understood in
terms of irreducible representations of U_q(\hat{sl(2)}).Comment: 31pp, Latex, CERN-TH.6935/93. To app. in Int. Jour. Mod. Phys. A.
(The title of the paper is changed. This is the ONLY change. Previous title
was: Hubbard-Like Models in the Infinite Repulsion Limit and
Finite-Dimensional Representations of the Affine Algebra U_q(\hat{sl(2)}).
A refined Razumov-Stroganov conjecture II
We extend a previous conjecture [cond-mat/0407477] relating the
Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to
refined numbers of alternating sign matrices. By considering the O(1) loop
model on a semi-infinite cylinder with dislocations, we obtain the generating
function for alternating sign matrices with prescribed positions of 1's on
their top and bottom rows. This seems to indicate a deep correspondence between
observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf
macro
Different facets of the raise and peel model
The raise and peel model is a one-dimensional stochastic model of a
fluctuating interface with nonlocal interactions. This is an interesting
physical model. It's phase diagram has a massive phase and a gapless phase with
varying critical exponents. At the phase transition point, the model exhibits
conformal invariance which is a space-time symmetry. Also at this point the
model has several other facets which are the connections to associative
algebras, two-dimensional fully packed loop models and combinatorics.Comment: 29 pages 17 figure
Conformal invariance and its breaking in a stochastic model of a fluctuating interface
Using Monte-Carlo simulations on large lattices, we study the effects of
changing the parameter (the ratio of the adsorption and desorption rates)
of the raise and peel model. This is a nonlocal stochastic model of a
fluctuating interface. We show that for the system is massive, for
it is massless and conformal invariant. For the conformal
invariance is broken. The system is in a scale invariant but not conformal
invariant phase. As far as we know it is the first example of a system which
shows such a behavior. Moreover in the broken phase, the critical exponents
vary continuously with the parameter . This stays true also for the critical
exponent which characterizes the probability distribution function of
avalanches (the critical exponent staying unchanged).Comment: 22 pages and 20 figure
Refined Razumov-Stroganov conjectures for open boundaries
Recently it has been conjectured that the ground-state of a Markovian
Hamiltonian, with one boundary operator, acting in a link pattern space is
related to vertically and horizontally symmetric alternating-sign matrices
(equivalently fully-packed loop configurations (FPL) on a grid with special
boundaries).We extend this conjecture by introducing an arbitrary boundary
parameter. We show that the parameter dependent ground state is related to
refined vertically symmetric alternating-sign matrices i.e. with prescribed
configurations (respectively, prescribed FPL configurations) in the next to
central row.
We also conjecture a relation between the ground-state of a Markovian
Hamiltonian with two boundary operators and arbitrary coefficients and some
doubly refined (dependence on two parameters) FPL configurations. Our
conjectures might be useful in the study of ground-states of the O(1) and XXZ
models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure
Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon
The raise and peel model of a one-dimensional fluctuating interface (model A)
is extended by considering one source (model B) or two sources (model C) at the
boundaries. The Hamiltonians describing the three processes have, in the
thermodynamic limit, spectra given by conformal field theory. The probability
of the different configurations in the stationary states of the three models
are not only related but have interesting combinatorial properties. We show
that by extending Pascal's triangle (which gives solutions to linear relations
in terms of integer numbers), to an hexagon, one obtains integer solutions of
bilinear relations. These solutions give not only the weights of the various
configurations in the three models but also give an insight to the connections
between the probability distributions in the stationary states of the three
models. Interestingly enough, Pascal's hexagon also gives solutions to a
Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few
references are adde
Stochastic processes and conformal invariance
We discuss a one-dimensional model of a fluctuating interface with a dynamic
exponent . The events that occur are adsorption, which is local, and
desorption which is non-local and may take place over regions of the order of
the system size. In the thermodynamic limit, the time dependence of the system
is given by characters of the conformal field theory of percolation. This
implies in a rigorous way a connection between CFT and stochastic processes.
The finite-size scaling behavior of the average height, interface width and
other observables are obtained. The avalanches produced during desorption are
analyzed and we show that the probability distribution of the avalanche sizes
obeys finite-size scaling with new critical exponents.Comment: 4 pages, 6 figures, revtex4. v2: change of title and minor
correction
A_k Generalization of the O(1) Loop Model on a Cylinder: Affine Hecke Algebra, q-KZ Equation and the Sum Rule
We study the A_k generalized model of the O(1) loop model on a cylinder. The
affine Hecke algebra associated with the model is characterized by a vanishing
condition, the cylindric relation. We present two representations of the
algebra: the first one is the spin representation, and the other is in the
vector space of states of the A_k generalized model. A state of the model is a
natural generalization of a link pattern. We propose a new graphical way of
dealing with the Yang-Baxter equation and -symmetrizers by the use of the
rhombus tiling. The relation between two representations and the meaning of the
cylindric relations are clarified. The sum rule for this model is obtained by
solving the q-KZ equation at the Razumov-Stroganov point.Comment: 43 pages, 22 figures, LaTeX, (ver 2) Introduction rewritten and
Section 4.3 adde
Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries
We propose new conjectures relating sum rules for the polynomial solution of
the qKZ equation with open (reflecting) boundaries as a function of the quantum
parameter and the -enumeration of Plane Partitions with specific
symmetries, with . We also find a conjectural relation \`a la
Razumov-Stroganov between the limit of the qKZ solution and refined
numbers of Totally Symmetric Self Complementary Plane Partitions.Comment: 27 pages, uses lanlmac, epsf and hyperbasics, minor revision
Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain
The sums of components of the ground states of the O(1) loop model on a
cylinder or of the XXZ quantum spin chain at Delta=-1/2 (of size L) are
expressed in terms of combinatorial numbers. The methods include the
introduction of spectral parameters and the use of integrability, a mapping
from size L to L+1, and knot-theoretic skein relations.Comment: final version to be publishe
- …
