2,605 research outputs found

    Primary Particle Type of the Most Energetic Fly's Eye Air Shower

    Full text link
    The longitudinal profile of the most energetic cosmic-ray air shower measured so far, the event recorded by the Fly's Eye detector with a reconstructed primary energy of about 320 EeV, is compared to simulated shower profiles. The calculations are performed with the CORSIKA code and include primary photons and different hadron primaries. For primary photons, preshower formation in the geomagnetic field is additionally treated in detail. For primary hadrons, the hadronic interaction models QGSJET01 and SIBYLL2.1 have been employed. The predicted longitudinal profiles are compared to the observation. A method for testing the hypothesis of a specific primary particle type against the measured profile is described which naturally takes shower fluctuations into account. The Fly's Eye event is compatible with any assumption of a hadron primary between proton and iron nuclei in both interaction models, although differences between QGSJET01 and SIBYLL2.1 in the predicted profiles of lighter nuclei exist. The primary photon profiles differ from the data on a level of ~1.5 sigma. Although not favoured by the observation, the primary photon hypothesis can not be rejected for this particular event.Comment: 20 pages, 8 figures; v2 matches version accepted by Astroparticle Physic

    Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    Get PDF
    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but large conversion probabilitites (>90%) are reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix A replaced, accepted by Astroparticle Physic

    On a possible photon origin of the most-energetic AGASA events

    Full text link
    In this work the ultra high energy cosmic ray events recorded by the AGASA experiment are analysed. With detailed simulations of the extensive air showers initiated by photons, the probabilities are determined of the photonic origin of the 6 AGASA events for which the muon densities were measured and the reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos, Greec

    Simulation of air shower image in fluorescence light based on energy deposits derived from CORSIKA

    Full text link
    Spatial distributions of energy deposited by an extensive air shower in the atmosphere through ionization, as obtained from the CORSIKA simulation program, are used to find the fluorescence light distribution in the optical image of the shower. The shower image derived in this way is somewhat smaller than that obtained from the NKG lateral distribution of particles in the shower. The size of the image shows a small dependence on the primary particle type.Comment: 36 pages, 4 tables, 12 figure

    Comparison of Hadronic Interaction Models at Auger Energies

    Get PDF
    The three hadronic interaction models DPMJET 2.55, QGSJET 01, and SIBYLL 2.1, implemented in the air shower simulation program CORSIKA, are compared in the energy range of interest for the Pierre Auger experiment. The model dependence of relevant quantities in individual hadronic interactions and air showers is investigated.Comment: Contribution to XII Int. Symp. on Very High Energy Cosmic Ray Interactions, 4 pages, 8 figure

    Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field

    Full text link
    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. We present a new Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected energy in row 1 of Table 3, extended caption of Table

    Assessing the Market for Poultry Litter in Georgia: Are Subsidies Needed to Protect Water Quality?

    Get PDF
    Concerns about nutrient loads into our waters have focused attention on poultry litter applications. Like many states with a large poultry industry, Georgia recently designed a subsidy program to facilitate the transportation of poultry litter out of vulnerable watersheds. This paper uses a transportation model to examine the necessity of a poultry litter subsidy to achieve water protection goals in Georgia. We also demonstrate the relationship between diesel and synthetic fertilizer prices and the value of poultry litter. Results suggest that a well functioning market would be able to remove excess litter from vulnerable watersheds in the absence of a subsidy.fertilizer, phosphorous, poultry litter, subsidy, transportation model, water quality, Environmental Economics and Policy, Marketing, Q12, Q13, Q25, Q53,

    FIM2c : A Multi-Colour, Multi-Purpose Imaging System to Manipulate and Analyse Animal Behaviour

    Get PDF
    In vivo whole-body imaging of small animals plays an important role for biomedical studies. In particular, animals like the fruit fly Drosophila melanogaster or the nematode Caenorhabditis elegans are popular model organisms for preclinical research since they offer sophisticated genetic tool-kits. Recording these translucent animals with high contrast in a large arena is however not trivial. Furthermore fluorescent proteins are widely used to mark cells in vivo and report their functions. This paper introduces a novel optical imaging technique called FIM2c enabling simultaneous detection of the animals posture and movement as well as fluorescent markers like GFP. FIM2c utilizes frustrated total internal reflection of two distinct wavelengths and captures both, reflected and emitted light. The resultant two-colour high-contrast images are superb compared to other imaging systems for larvae or worms. This multi-purpose method enables a large variety of different experimental approaches. For example FIM2c can be used to image GFP positive cells / tissues / animals and supports the integration of fluorescent tracers into multi-target tracking paradigms. Moreover, optogenetic tools can be applied in large scale behavioural analysis to manipulate and study neuronal functions. To demonstrate the benefit of our system, we use FIM2c to resolve colliding larvae in a high-throughput approach, which was impossible given the existing tools. Finally, we present a comprehensive database including images and locomotion features of more than 1; 300 resolved collisions available for the community. In conclusion FIM2c is a versatile tool for advanced imaging and locomotion analysis for a variety of different model organisms
    corecore