12 research outputs found
Recent developments in immunotherapy of acute myeloid leukemia
The advent of new immunotherapeutic agents in clinical practice has revolutionized cancer treatment in the past decade, both in oncology and hematology. The transfer of the immunotherapeutic concepts to the treatment of acute myeloid leukemia (AML) is hampered by various characteristics of the disease, including non-leukemia-restricted target antigen expression profile, low endogenous immune responses, and intrinsic resistance mechanisms of the leukemic blasts against immune responses. However, considerable progress has been made in this field in the past few years. Within this manuscript, we review the recent developments and the current status of the five currently most prominent immunotherapeutic concepts: (1) antibody-drug conjugates, (2) T cell-recruiting antibody constructs, (3) chimeric antigen receptor (CAR) T cells, (4) checkpoint inhibitors, and (5) dendritic cell vaccination. We focus on the clinical data that has been published so far, both for newly diagnosed and refractory/relapsed AML, but omitting immunotherapeutic concepts in conjunction with hematopoietic stem cell transplantation. Besides, we have included important clinical trials that are currently running or have recently been completed but are still lacking full publication of their results. While each of the concepts has its particular merits and inherent problems, the field of immunotherapy of AML seems to have taken some significant steps forward. Results of currently running trials will reveal the direction of further development including approaches combining two or more of these concepts
MYC protein interactors in gene transcription and cancer
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a \u2018coalition model\u2019, as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis
Erratum: Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia
Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia
Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCRABL1 kinase-independent TKI resistance. Here, we identified activation of signal transducer and activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, fluorescence polarization assays, and hydrogen-deuterium exchange assays establish direct engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 domain/BP-5-087 interface. In primary cells from CML patients with BCR-ABL1 kinase-independent TKI resistance, BP-5-087 (1.0 μM) restored TKI sensitivity to therapy-resistant CML progenitor cells, including leukemic stem cells (LSCs). Our findings implicate STAT3 as a critical signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has clinical utility for treating malignancies characterized by STAT3 activation
Design, Optimization, and Pre-Clinical Evaluation of Direct, Mechanism-Based STAT3 Inhibitors for Treating Myeloid Disorders
Abstract
We have identified STAT3 as a convergence point for oncogenic signaling in tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia (CML) lacking BCR-ABL1 kinase domain mutations. In addition, we found that STAT3 activity contributes to disease in other myeloid disorders, including acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). Utilizing TKI-resistant CML as a model system, we identified BP-5-087 as a small molecule inhibitor of STAT3 that reduces STAT3 phosphorylation and nuclear transactivation (Eiring et al. Leukemia, 2014).
Binding of BP-5-087 to the STAT3 SH2 domain was initially assessed using fluorescence polarization (FP) assays and high-resolution computational docking simulations. To further validate the binding motif of BP-5-087, we conducted time-resolved electrospray ionization mass spectrometry/hydrogen-deuterium exchange experiments. Fold-change in deuterium uptake was analyzed for 68 STAT3 peptides representing 71% sequence coverage, and mapped onto the crystal structure of STAT3. This analysis precisely defined the binding epitope for BP-5-087 within the STAT3 SH2 domain.
We next tested the effects of BP-5-087 in several myeloid malignancies using relevant disease models. (i) CML stem and progenitor cells from TKI-resistant patients without kinase domain mutations were treated with BP-5-087 ex vivo, using short-term liquid culture, clonogenic and LTC-IC assays. BP-5-087 treatment significantly reduced colony formation by CML stem and progenitor cells (p<0.01), with no effect on normal human CD34+ cord blood (CB) cells. (ii) Similarly, BP-5-087 also increased apoptosis and reduced viability (p<0.05) of primary AML blasts treated ex vivo with BP-5-087 for 72 hours in liquid culture. (iii) CD34+ cells from patients with myelofibrosis were also treated with BP-5-087 in clonogenic assays, and similar to CML, BP-5-087 reduced myeloid colony formation, although to a lesser extent.
The in vivo activity of BP-5-087 was next evaluated in a murine model of JAK2 V617F-induced MPN. Briefly, Balb/c bone marrow was transduced with JAK2 V617F-GFP, followed by injection into lethally irradiated recipients. After disease induction, mice were treated with BP-5-087 (25 mg/kg) by once-daily oral gavage. No toxicities were observed after 40 days of treatment in BP-5-087-treated mice. While BP-5-087 did not significantly reduce the percentage of GFP+ cells, there was a 41% reduction of spleen weight in BP-5-087-treated mice compared to vehicle-treated controls (p<0.05). Post study analysis revealed BP-5-087 plasma concentrations <1 μM, suggesting that insufficient bioavailability contributed to the modest in vivo effects.
To advance the lead optimization of our STAT3 inhibitor series, we instituted a comprehensive screening cascade. We first developed a computational model (quantitative structure-activity relationship, QSAR) to guide and prioritize selection of new inhibitor candidates for synthesis. Compounds are initially ranked using a methanethiosulfonate (MTS)-based cell viability assay in a TKI-resistant, STAT3-dependent CML cell line (AR230R). Inhibition of STAT3 is confirmed using a cell-based STAT3 reporter assay and an in vitro FP-based binding assay. Optimization of potency is balanced by the goals of reducing molecular weight (MW) and calculated LogP (cLogP) compared to BP-5-087 (MW: 694.8; cLogP: 7.3). Compounds with improvements in these categories are then subject to toxicity testing utilizing clonogenic assays with CD34+ CB cells. Non-toxic compounds are evaluated for their pharmacokinetic profile in Balb/c mice and tested for activity in primary samples from CML, AML and MPN patients. These activities have directed us to a lead compound, AM-1-124, which displays significant improvements in potency, MW, cLogP, and in vivo half-life compared to BP-5-087. AM-1-124 had minimal effects in the CB toxicity assay and induced apoptosis in primary AML patient samples at 2-fold lower concentrations than BP-5-087. With AM-1-124 as our current lead compound, we are continuing our iterative evaluation of novel STAT3 inhibitors utilizing our screening cascade. Design and testing of optimized, orally active inhibitors will enable further evaluation of STAT3 as a target in animal models of myeloid leukemia and will justify the clinical development of these compounds for patients in need of new targeted therapies.
Disclosures
Deininger: BMS, Novartis, Celgene, Genzyme, Gilead: Research Funding; BMA, ARIAD, Novartis, Incyte, Pfizer: Advisory Board, Advisory Board Other; BMS, ARIAD, Novartis, Incyte, Pfizer: Consultancy.
</jats:sec
Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry
Hyperphosphorylation of Intrinsically Disordered Tau Protein Induces an Amyloidogenic Shift in Its Conformational Ensemble
Tau is an intrinsically disordered protein (IDP) whose primary physiological role is to stabilize microtubules in neuronal axons at all stages of development. In Alzheimer's and other tauopathies, tau forms intracellular insoluble amyloid aggregates known as neurofibrillary tangles, a process that appears in many cases to be preceded by hyperphosphorylation of tau monomers. Understanding the shift in conformational bias induced by hyperphosphorylation is key to elucidating the structural factors that drive tau pathology, however, as an IDP, tau is not amenable to conventional structural characterization. In this work, we employ a straightforward technique based on Time-Resolved ElectroSpray Ionization Mass Spectrometry (TRESI-MS) and Hydrogen/Deuterium Exchange (HDX) to provide a detailed picture of residual structure in tau, and the shifts in conformational bias induced by hyperphosphorylation. By comparing the native and hyperphosphorylated ensembles, we are able to define specific conformational biases that can easily be rationalized as enhancing amyloidogenic propensity. Representative structures for the native and hyperphosphorylated tau ensembles were generated by refinement of a broad sample of conformations generated by low-computational complexity modeling, based on agreement with the TRESI-HDX profiles
