80 research outputs found

    The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high molecular weight dissolved organic nitrogen

    Get PDF
    Environmental evidence suggests that Aureococcus anophagefferens (Pelagophyceae), a eukaryotic picoplankton that blooms in coastal seawaters, can outcompete other organisms because of its ability to use abundant dissolved organic nitrogen (DON). To test this hypothesis, we isolated A. anophagefferens in axenic culture and monitored its growth on high-molecular weight (HMW) DON collected from sediment pore waters, a putative source for DON in bays where blooms occur. HMW DON originating from pore water had a substantially higher protein content than surface seawater DON. We found that A. anophagefferens could deplete 25-36% of the available nitrogen in cultures with HMW DON as the sole source of nitrogen and that this corresponded well with the protein fraction in pore-water HMW DON. High rates of cell surface peptide hydrolysis and no detectable N-acetyl polysaccharide hydrolysis, together with the high percentage of hydrolyzable amino acids compared to hydrolyzable aminosugars present in the HMW DON, pointed to the protein fraction as the more likely source of nitrogen used for growth. Whether or not nitrogen scavenging from protein is a common mechanism in phytoplankton is at present unknown but needs to be investigate

    Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 2485-2495, doi:10.5194/bg-9-2485-2012.Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m−2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m−2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light). This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S provides a suitable biogeochemical environment for them to flourish.Financial support for this work was provided by the Council of Scientific & Industrial Research (CSIR) and Ministry of Earth Sciences (MoES). S. Kurian acknowledges POGO-SCOR for financial support to visit WHOI. R. Roy, G. Narvenkar and A. Sarkar received fellowship support from CSIR. D. Repeta acknowledges support from US National Science Foundation Center Award EF0424599 to the Center for Microbial Oceanography: Research and Education (C-MORE)

    Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of manning and strain (1943) at Moss Beach, California

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kiang, N. Y., Swingley, W. D., Gautam, D., Broddrick, J. T., Repeta, D. J., Stolz, J. F., Blankenship, R. E., Wolf, B. M., Detweiler, A. M., Miller, K. A., Schladweiler, J. J., Lindeman, R., & Parenteau, M. N. Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of manning and strain (1943) at Moss Beach, California. Microorganisms, 10(4), (2022): 819, https://doi.org/10.3390/microorganisms10040819.We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.N.Y.K., M.N.P. and R.E.B. were supported by the NASA Virtual Planetary Laboratory team (VPL), which was funded under NASA Astrobiology Institute Cooperative Agreement Number NNA13AA93A, and Grant Number 80NSSC18K0829. This work also benefited from participation in the NASA Nexus for Exoplanet Systems Science (NExSS) research coordination network (RCN). W.D.S, N.Y.K. and M.N.P. were also supported by a NASA Exobiology grant No. 80NSSC19K0478. J.TB. was supported by the NASA Postdoctoral Program (NPP) award number NPP168014S. N.Y.K. received training support from the NASA Goddard Space Flight Center Training Office to take the Microbial Diversity course at the Marine Biological Laboratory, Woods Hole, MA, USA

    Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset

    Get PDF
    We present an approach in which the semantics of an XML language is defined by means of a transformation from an XML document model (an XML schema) to an application specific model. The application specific model implements the intended behavior of documents written in the language. A transformation is specified in a model transformation language used in the Model Driven Architecture (MDA) approach for software development. Our approach provides a better separation of three concerns found in XML applications: syntax, syntax processing logic and intended meaning of the syntax. It frees the developer of low-level syntactical details and improves the adaptability and reusability of XML applications. Declarative transformation rules and the explicit application model provide a finer control over the application parts affected by adaptations. Transformation rules and the application model for an XML language may be composed with the corresponding rules and application models defined for other XML languages. In that way we achieve reuse and composition of XML applications

    Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 35 (2012): 369-382, doi:10.1007/s12237-011-9386-6.River inputs of nutrients and organic matter impact the biogeochemistry of arctic estuaries and the Arctic Ocean as a whole, yet there is considerable uncertainty about the magnitude of fluvial fluxes at the pan-arctic scale. Samples from the six largest arctic rivers, with a combined watershed area of 11.3 x 106 km2, have revealed strong seasonal variations in constituent concentrations and fluxes within rivers as well as large differences among the rivers. Specifically, we investigate fluxes of dissolved organic carbon, dissolved organic nitrogen, total dissolved phosphorus, dissolved inorganic nitrogen, nitrate, and silica. This is the first time that seasonal and annual constituent fluxes have been determined using consistent sampling and analytical methods at the pan arctic scale, and consequently provide the best available estimates for constituent flux from land to the Arctic Ocean and surrounding seas. Given the large inputs of river water to the relatively small Arctic Ocean, and the dramatic impacts that climate change is having in the Arctic, it is particularly urgent that we establish the contemporary river fluxes so that we will be able to detect future changes and evaluate the impact of the changes on the biogeochemistry of the receiving coastal and ocean systems.This work was supported by the National Science Foundation through grants OPP-0229302, OPP-0519840, OPP-0732522, and OPP-0732944. Additional support was provided by the U. S. Geological Survey (Yukon River) and the Department of Indian and Northern Affairs (Mackenzie River)
    corecore