55 research outputs found

    Characterization of Spatiooral Cardiac Action Potential Variability at Baseline and under ß-Adrenergic Stimulation by Combined Unscented Kalman Filter and Double Greedy Dimension Reduction

    Get PDF
    Objective: Elevated spatiooral variability of human ventricular repolarization has been related to increased risk for ventricular arrhythmias and sudden cardiac death, particularly under ß-adrenergic stimulation (ß-AS). This work presents a methodology for theoretical characterization of temporal and spatial repolarization variability at baseline conditions and in response to ß-AS. For any measured voltage trace, the proposed methodology estimates the parameters and state variables of an underlying human ventricular action potential (AP) model by combining Double Greedy Dimension Reduction (DGDR) with automatic selection of biomarkers and the Unscented Kalman Filter (UKF). Such theoretical characterization can facilitate subsequent characterization of underlying variability mechanisms. Material and Methods: Given an AP trace, initial estimates for the ionic conductances in a stochastic version of the baseline human ventricular O'Hara et al. model were obtained by DGDR. Those estimates served to initialize and update model parameter estimates by the UKF method based on formulation of an associated nonlinear state-space representation and joint estimation of model parameters and state variables. Similarly, ß-AS-induced phosphorylation levels of cellular substrates were estimated by the DGDR-UKF methodology. Performance was tested by building an experimentally-calibrated population of virtual cells, from which synthetic AP traces were generated for baseline and ß-AS conditions. Results: The combined DGDR-UKF methodology led to 25% reduction in the error associated with estimation of ionic current conductances at baseline conditions and phosphorylation levels under ß-AS with respect to individual DGDR and UKF methods. This improvement was not at the expense of higher computational load, which was diminished by 90% with respect to the individual UKF method. Both temporal and spatial AP variability of repolarization were accurately characterized by the DGDR-UKF methodology. Conclusions: A combined DGDR-UKF methodology is proposed for parameter and state variable estimation of human ventricular cell models from available AP traces at baseline and under ß-AS. This methodology improves the estimation performance and reduces the convergence time with respect to individual DGDR and UKF methods and renders a suitable approach for computational characterization of spatiooral repolarization variability to be used for ascertainment of variability mechanisms and its relation to arrhythmogenesis

    Identification and Characterisation of a Novel Acylpeptide Hydrolase from Sulfolobus Solfataricus: Structural and Functional Insights

    Get PDF
    A novel acylpeptide hydrolase, named APEH-3Ss, was isolated from the hypertermophilic archaeon Sulfolobus solfataricus. APEH is a member of the prolyl oligopeptidase family which catalyzes the removal of acetylated amino acid residues from the N terminus of oligopeptides. The purified enzyme shows a homotrimeric structure, unique among the associate partners of the APEH cluster and, in contrast to the archaeal APEHs which show both exo/endo peptidase activities, it appears to be a “true” aminopeptidase as exemplified by its mammalian counterparts, with which it shares a similar substrate specificity. Furthermore, a comparative study on the regulation of apeh gene expression, revealed a significant but divergent alteration in the expression pattern of apeh-3Ss and apehSs (the gene encoding the previously identified APEHSs from S. solfataricus), which is induced in response to various stressful growth conditions. Hence, both APEH enzymes can be defined as stress-regulated proteins which play a complementary role in enabling the survival of S. solfataricus cells under different conditions. These results provide new structural and functional insights into S. solfataricus APEH, offering a possible explanation for the multiplicity of this enzyme in Archaea

    Identification of nursing assessment models/tools validated in clinical practice for use with diverse ethno-cultural groups: an integrative review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High income nations are currently exhibiting increasing ethno-cultural diversity which may present challenges for nursing practice. We performed an integrative review of literature published in North America and Europe between 1990 and 2007, to map the state of knowledge and to identify nursing assessment tools/models which are have an associated research or empirical perspective in relation to ethno-cultural dimensions of nursing care.</p> <p>Methods</p> <p>Data was retrieved from a wide variety of sources, including key electronic bibliographic databases covering research in biomedical fields, nursing and allied health, and culture, e.g. CINAHL, MEDline, PUBmed, Cochrane library, PsycINFO, Web of Science, and HAPI. We used the Critical Appraisal Skills Programme tools for quality assessment. We applied Torraco's definition and method of an integrative review that aims to create new knowledge and perspectives on a given phenomena. To add methodological rigor with respect to the search strategy and other key review components we also used the principles established by the Centre for Reviews and Dissemination.</p> <p>Results</p> <p>Thirteen thousand and thirteen articles were retrieved, from which 53 full papers were assessed for inclusion. Eight papers met the inclusion criteria, describing research on a total of eight ethno-cultural assessment tools/models. The tools/models are described and synthesized.</p> <p>Conclusions</p> <p>While many ethno-cultural assessment tools exist to guide nursing practice, few are informed by research perspectives. An increased focus on the efficiency and effectiveness of health services, patient safety, and risk management, means that provision of culturally responsive and competent health services will inevitably become paramount.</p

    One-year seasonal survey of the chlorophyll photodegradation process in the northwestern Mediterranean Sea

    No full text
    Particulate samples from the water column were collected monthly from depths of 5-150 m, between May 1996 and March 1997, in the northwestern Mediterranean Sea (Ligurian Sea) as part of the DYFAMED project within the French JGOFS program. These samples were analyzed by gas chromatography-electron impact mass spectrometry for their phytol and 3-methylidene-3,7,11-trimethylhexadecan-1,2-diol (phytyldiol) content. The corresponding Chlorophyll Phytyl side chain Photodegradation Index, molar ratio of phytyldiol to phytol, was calculated and the mean amount of chlorophyll photodegraded within the euphotic zone estimated. Seasonal differences in the chlorophyll photodegradation process appear in the one-year study. The chlorophyll appeared more photodegraded in the surface water (generally more than 40% photodegraded at 5-10m) than at the deep chlorophyll maximum (DCM) (40-50m) observed in the summer stratified waters (about 20% photodegraded). This difference was attributed to the healthy state of the phytoplankton community (coincidence with the highest primary production levels) and to the lower intensity of irradiance at the DCM level. On the other hand, the bulk of the detrital chlorophyll (chlorophyll associated with phytodetritus, phaeopigments) undergoes photodegradation before it sinks out of the photic zone. However, in January (winter mixed water) the pigments exported towards the sea floor were less photodegraded. This is thought to result from a shorter period of residence of the pigments in the photic zone due to vertical convection and grazing activity of macrozooplankton (salps), which are producers of rapid sinking fecal pellets. (C) 2002 Elsevier Science Ltd. All rights reserved

    Contribution of ankle, knee, and hip joints to the perception threshold for support surface rotation.

    No full text
    The purpose of the present experiment was to investigate the extent to which subjects can perceive, at very slow velocities, an angular rotation of the support surface about the medio-lateral axis of the ankle, knee, hip, or neck joint when visual cues are not available. Subjects were passively displaced on a slowly rotating platform at .01, .03, and .05 deg/sec. The subjects' task was to detect movements of the platform in four different postural conditions allowing body oscillations about the ankle, knee, hip, or neck joint. In Experiment 1, subjects had to detect backward and forward rotation (pitching). In Experiment 2, they had to detect left and right rotations of the platform (rolling). In Experiment 3, subjects had to detect both backward/forward and left/right rotations of the platform, with the body fixed and the head either fixed or free to move. Overall, when the body was free to oscillate about the ankle, knee, or hip joints, a similar threshold for movement perception was observed. This threshold was lower for rolling than for pitching. Interestingly, in these postural conditions, an unconscious compensation in the direction opposite to the platform rotation was observed on most trials. The threshold for movement perception was much higher when the head was the only segment free to oscillate about the neck joint. These results suggest that, in static conditions, the otoliths are poor detectors of the direction of gravity forces. They also suggest that accurate perception of body orientation is improved when proprioceptive information can be dynamically integrated

    C25 highly branched isoprenoid (HBI) alkenes from the marine benthic diatom Pleurosigma strigosum

    No full text
    The hydrocarbon composition of the marine diatom Pleurosigma strigosum isolated from coastal Mediterranean sediments is described. A suite of five C25 highly branched isoprenoid (HBI) alkenes with 2 5 double bonds were detected together with n-C21:4 and n-C21:5 alkenes and squalene. The analysis by 1H and 13C NMR spectroscopy of two isolated HBI alkenes allowed the structural identification of a novel C25 HBI triene (2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadeca-5E,13-diene) and the first identification in diatom cells of 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5E-ene, an HBI previously detected in marine sediments and particulate matter. The other minor C25 HBIs detected were a tetraene and a pentaene that have been previously identified in other diatoms from the genera Haslea and Rhizosolenia, and one other C25 tetraene that could not be structurally identified. The structures of the HBI alkenes of P. strigosum were compared with those of C25 homologues previously identified in three other Pleurosigma sp. (Pleurosigma intermedium, Pleurosigma planktonicum and Pleurosigma sp.). Unlike most structures previously reported, none of the HBI alkenes produced by P. strigosum showed an unsaturation at C7 C20, or E/Z isomerism of the trisubstituted double bond at C9 C10 (whenever present)
    corecore