2,639 research outputs found
A Comparison of Risk Exposure in Aquaculture and Agricultural Businesses
Agriculture and aquaculture have common features associated with their biological nature affecting risk exposure of the businesses. The aim of this paper is to compare risk exposure in salmon farming and agricultural enterprises in Norway by using an implicit error component model to examine the risk structure of yields, prices and economic returns at the farm level. Results indicate a higher farm-level year-to-year variability in yields, prices and economic returns in salmon farming than in agricultural enterprises. The variability in livestock enterprises was generally lower than for crop enterprises. Return on assets was highest in salmon farming with an average annual return of 9.2%. All of the agricultural farm types exhibited a negative average return on assets on average. Stochastic dominance tests of the distribution of economic returns from aquaculture and agricultural farm types showed salmon farming to be the most risk efficient alternative and salmon farming was most attractive from an investor’s perspective.Risk analysis, variability, Norway, Risk and Uncertainty,
Heavy rain effects on airplane performance
The objective is to determine if the aerodynamic characteristics of an airplane are altered while flying in the rain. Wind-tunnel tests conducted at the NASA Langley Research Center (LaRC) have shown losses in maximum lift, reduction in stall angle, and increases in drag when a wing is placed in a simulated rain spray. For these tests the water spray concentration used represented a very heavy rainfall. A lack of definition of the scaling laws for aerodynamic testing in a two-phase, two-component flow makes interpolation of the wind-tunnel test uncertain. Tests of a large-scale wing are to be conducted at the LaRC. The large-scale wing is mounted on top of the Aircraft Landing Dynamics Facility (ALDF) carriage. This carriage (which is 70-foot long, 30-foot wide, and 30-foot high) is propelled with the wing model attached down a 3000-foot long test track by a water jet at speeds of up to 170 knots. A simulated rain spray system has been installed along 500 feet of the test track and can simulate rain falls from 2 to 40 inches/hour. Operational checks are underway and the initial tests should be completed by the Fall of 1989
Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940
We present near-infrared spectroscopic analysis of 12 red giant members of
the Galactic open cluster NGC 6940. High-resolution (R45000) and high
signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were
gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m
Smith Telescope at McDonald Observatory. We obtained abundances of H-burning
(C, N, O), (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group
(Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report
the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH
and CN features in the H band were used to obtain O and N abundances. C
abundances were measured from four different features: CO molecular lines in
the K band, high excitation C I lines present in both near-infrared and
optical, CH and bands in the optical region. We have also determined
ratios from the R-branch band heads of first overtone (2-0) and
(3-1) (2-0) lines near 23440
\overset{\lower.5em\circ}{\mathrm{A}} and (3-1) lines at about
23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF
feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar
fluorine abundances without ruling out a slight enhancement. For some elements
(such as the group), IGRINS data yield more internally
self-consistent abundances. We also revisited the CMD of NGC 6940 by
determining the most probable cluster members using Gaia DR2. Finally, we
applied Victoria isochrones and MESA models in order to refine our estimates of
the evolutionary stages of our targets.Comment: 16 pages, 10 figure
Recommended from our members
Analyzing Forensic Evidence Based on Density with Magnetic Levitation
This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (±0.0002 g/cm3) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and verifiable and provides numerical values—independent of the specific apparatus or analyst—that correspond to the absolute density of the sample that may be entered into a searchable database. We discuss the feasibility of MagLev as a possible means of characterizing forensic-related evidence and demonstrate the ability of MagLev to (i) determine the density of samples of glitter and gunpowder, (ii) separate glitter particles of different densities, and (iii) determine the density of a glitter sample that was removed from a complex sample matrix.Chemistry and Chemical Biolog
The Spectrum of SS 433 in the H and K Bands
SS~433 is an X-ray binary and the source of sub-relativistic, precessing,
baryonic jets. We present high-resolution spectrograms of SS 433 in the
infrared H and K bands. The spectrum is dominated by hydrogen and helium
emission lines. The precession phase of the emission lines from the jet
continues to be described by a constant period, P_jet= 162.375 d. The limit on
any secularly changing period is . The He I 2.0587
micron line has complex and variable P Cygni absorption features produced by an
inhomogeneous wind with a maximum outflow velocity near 900 km/s. The He II
emission lines in the spectrum also arise in this wind. The higher members of
the hydrogen Brackett lines show a double-peaked profile with symmetric wings
extending more than +/-1500 km/s from the line center. The lines display radial
velocity variations in phase with the radial velocity variation expected of the
compact star, and they show a distortion during disk eclipse that we interpret
as a rotational distortion. We fit the line profiles with a model in which the
emission comes from the surface of a symmetric, Keplerian accretion disk around
the compact object. The outer edge of the disk has velocities that vary from
110 to 190 km/s. These comparatively low velocities place an important
constraint on the mass of the compact star: Its mass must be less than 2.2
M_solar and is probably less than 1.6 M_solar.Comment: ApJ, accepte
Observed Variability at 1um and 4um in the Y0 Brown Dwarf WISEP J173835.52+273258.9
We have monitored photometrically the Y0 brown dwarf WISEP
J173835.52+273258.9 (W1738) at both near- and mid-infrared wavelengths. This ~1
Gyr-old 400K dwarf is at a distance of 8pc and has a mass around 5 M_Jupiter.
We observed W1738 using two near-infrared filters at lambda~1um, Y and J, on
Gemini observatory, and two mid-infrared filters at lambda~4um, [3.6] and
[4.5], on the Spitzer observatory. Twenty-four hours were spent on the source
by Spitzer on each of June 30 and October 30 2013 UT. Between these
observations, around 5 hours were spent on the source by Gemini on each of July
17 and August 23 2013 UT. The mid-infrared light curves show significant
evolution between the two observations separated by four months. We find that a
double sinusoid can be fit to the [4.5] data, where one sinusoid has a period
of 6.0 +/- 0.1 hours and the other a period of 3.0 +/- 0.1 hours. The
near-infrared observations suggest variability with a ~3.0 hour period,
although only at a <~2 sigma confidence level. We interpret our results as
showing that the Y dwarf has a 6.0 +/- 0.1 hour rotation period, with one or
more large-scale surface features being the source of variability. The
peak-to-peak amplitude of the light curve at [4.5] is 3%. The amplitude of the
near-infrared variability, if real, may be as high as 5 to 30%. Intriguingly,
this size of variability and the wavelength dependence can be reproduced by
atmospheric models that include patchy KCl and Na_2S clouds and associated
small changes in surface temperature. The small number of large features, and
the timescale for evolution of the features, is very similar to what is seen in
the atmospheres of the solar system gas giants.Comment: Accepted by ApJ July 26 2016. Twenty-six pages include 8 Figures and
5 Table
Magnetic moment non-conservation in magnetohydrodynamic turbulence models
The fundamental assumptions of the adiabatic theory do not apply in presence
of sharp field gradients as well as in presence of well developed
magnetohydrodynamic turbulence. For this reason in such conditions the magnetic
moment is no longer expected to be constant. This can influence particle
acceleration and have considerable implications in many astrophysical problems.
Starting with the resonant interaction between ions and a single parallel
propagating electromagnetic wave, we derive expressions for the magnetic moment
trapping width (defined as the half peak-to-peak difference in the
particle magnetic moment) and the bounce frequency . We perform
test-particle simulations to investigate magnetic moment behavior when
resonances overlapping occurs and during the interaction of a ring-beam
particle distribution with a broad-band slab spectrum.
We find that magnetic moment dynamics is strictly related to pitch angle
for a low level of magnetic fluctuation, , where is the constant and uniform background magnetic field.
Stochasticity arises for intermediate fluctuation values and its effect on
pitch angle is the isotropization of the distribution function .
This is a transient regime during which magnetic moment distribution
exhibits a characteristic one-sided long tail and starts to be influenced by
the onset of spatial parallel diffusion, i.e., the variance
grows linearly in time as in normal diffusion. With strong fluctuations
isotropizes completely, spatial diffusion sets in and
behavior is closely related to the sampling of the varying magnetic field
associated with that spatial diffusion.Comment: 13 pages, 10 figures, submitted to PR
Ballistic Composite Fermions in Semiconductor Nanostructures
We report the results of two fundamental transport measurements at a Landau
level filling factor of 1/2. The well known ballistic electron transport
phenomena of quenching of the Hall effect in a mesoscopic cross-junction and
negative magnetoresistance of a constriction are observed close to B~=~0 and
. The experimental results demonstrate semi-classical charge
transport by composite fermions, which consist of electrons bound to an even
number of flux quanta.Comment: 9 pages TeX 3.1415 C version 6.1, 3 PostScript figure
- …
