107 research outputs found

    A large-N analysis of the local quantum critical point and the spin-liquid phase

    Full text link
    We study analytically the Kondo lattice model with an additional nearest-neighbor antiferromagnetic interaction in the framework of large-N theory. We find that there is a local quantum critical point between two phases, a normal Fermi-liquid and a spin-liquid in which the spins are decoupled from the conduction electrons. The local spin susceptibility displays a power-law divergence throughout the spin liquid phase. We check the reliability of the large-N results by solving by quantum Monte Carlo simulation the N=2 spin-liquid problem with no conduction electrons and find qualitative agreement. We show that the spin-liquid phase is unstable at low temperatures, suggestive of a first-order transition to an ordered phase.Comment: 4 pages and 1 figur

    Magnetoconductance through a vibrating molecule in the Kondo regime

    Full text link
    The effect of a magnetic field on the equilibrium spectral and transport properties of a single-molecule junction is studied using the numerical renormalization group method. The molecule is described by the Anderson-Holstein model in which a single vibrational mode is coupled to the electron density. The effect of an applied magnetic field on the conductance in the Kondo regime is qualitatively different in the weak and strong electron-phonon coupling regimes. In the former case, the Kondo resonance is split and the conductance is strongly suppressed by a magnetic field gmuBBkBTKg mu_B B \gtrsim k_BT_K, with TKT_K the Kondo temperature. In the strong electron-phonon coupling regime a charge analog of the Kondo effect develops. In this case the Kondo resonance is not split by the field and the conductance in the Kondo regime is enhanced in a broad range of values of BB.Comment: 6 pages, 4 figure

    Locally critical point in an anisotropic Kondo lattice

    Full text link
    We report the first numerical identification of a locally quantum critical point, at which the criticality of the local Kondo physics is embedded in that associated with a magnetic ordering. We are able to numerically access the quantum critical behavior by focusing on a Kondo-lattice model with Ising anisotropy. We also establish that the critical exponent for the q-dependent dynamical spin susceptibility is fractional and compares well with the experimental value for heavy fermions.Comment: 4 pages, 3 figures; published versio

    Continuous quantum phase transition in a Kondo lattice model

    Full text link
    We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory (EDMFT) appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.Comment: 4 pages, 4 figures; updated, to appear in PR

    Disorder effects in the quantum Heisenberg model: An Extended Dynamical mean-field theory analysis

    Full text link
    We investigate a quantum Heisenberg model with both antiferromagnetic and disordered nearest-neighbor couplings. We use an extended dynamical mean-field approach, which reduces the lattice problem to a self-consistent local impurity problem that we solve by using a quantum Monte Carlo algorithm. We consider both two- and three-dimensional antiferromagnetic spin fluctuations and systematically analyze the effect of disorder. We find that in three dimensions for any small amount of disorder a spin-glass phase is realized. In two dimensions, while clean systems display the properties of a highly correlated spin-liquid (where the local spin susceptibility has a non-integer power-low frequency and/or temperature dependence), in the present case this behavior is more elusive unless disorder is very small. This is because the spin-glass transition temperature leaves only an intermediate temperature regime where the system can display the spin-liquid behavior, which turns out to be more apparent in the static than in the dynamical susceptibility.Comment: 15 pages, 7 figure

    Many Body Effects on the Transport Properties of Single-Molecule Devices

    Full text link
    The conductance through a molecular device including electron-electron and electron-phonon interactions is calculated using the Numerical Renormalization Group method. At low temperatures and weak electron-phonon coupling the properties of the conductance can be explained in terms of the standard Kondo model with renormalized parameters. At large electron-phonon coupling a charge analog of the Kondo effect takes place that can be mapped into an anisotropic Kondo model. In this regime the molecule is strongly polarized by a gate voltage which leads to rectification in the current-voltage characteristics of the molecular junction.Comment: 4 pages, 4 figures, minor changes, added reference

    Universal Distribution of Kondo Temperatures in Dirty Metals

    Full text link
    Kondo screening of diluted magnetic impurities in a disordered host is studied analytically and numerically in one, two and three dimensions. It is shown that in the T_K \to 0 limit the distribution of Kondo temperatures has a universal form, P(T_K) \sim T_K^{-\alpha} that holds in the insulating phase and persists in the metallic phase close to the metal insulator transition. Moreover, the exponent \alpha depends only on the dimensionality. The most important consequence of this result is that the T-dependence of thermodynamic properties is smooth across the metal-insulator transition in three dimensional systems.Comment: 4 pages, 3 figures; added referenc
    corecore