6,538 research outputs found

    Electron Transfer-oxy Radical Mechanism for Anti-cancer Agents: 9-anilinoacridines

    Get PDF
    A possible mode of action involving electron transfer is advanced for the 9- anilinoacridines. The mechanism entails formation of toxic oxy radicals which destroy the neoplasm. Cyclic voltammetry was performed on iminium type ions derived by protonation of the acridines. Reductions were generally reversible with potentials of about - 0.60 V. Involvement of quinoidal metabolites is also a possibility. The relationship of electrochemical behavior to structure and physiological activity is addressed

    Anti-cancer Action of Metal Complexes: Electron Transfer and Oxidative Stress?

    Get PDF
    Evidence is presented in support of an electron transfer mechanism for various metal complexes possessing anti-neoplastic properties. Cyclic voltammetry was performed on several metallocenes, bis(acetato)bis(imidazole)Cu(II), and coordination compounds (Cu or Fe) of the anti-tumor agents, bipyridine, phenanthroline, hydroxyurea, diethyldithiocarbamate, and α, α1-bis(8-hydroxyquinolin-7-yl)-4-methoxytoluene. The favorable reduction potentials ranged from +0.5 to -0.5 V. Electrochemical behavior is correlated in some cases with structure and physiological activity. Relevant literature data are discussed

    Charge Transfer-oxy Radical Mechanism for Anti-cancer Agents

    Get PDF
    The proposal is advanced that anti-cancer drugs generally function by charge transfer resulting in formation of toxic oxy radicals which destroy the neoplasm. Electrochemical studies were performed with some of the main types of agents: iminium ions (adenine iminium from alkylating species, iminium metabolite of 6-mercaptopurine, nitidine, other polynuclear iminiums) and metal complexes (Pt(II)diaquodiammine-guanosine, copper salicylaldoximes). Reduction potentials ranged from -0.4 to -1.2 V. Literature data for quinones are presented and radiation is discussed. Based on the theoretical framework, a rationale is offered for the carcinogen-anti-cancer paradox and the role of antioxidants

    Occurrence of the Old World bug Megacopta cribraria (Fabricius) (Heteroptera: Plataspidae) in Georgia: a serious home invader and potential legume pest

    Get PDF
    Specimens of Megacopta cribraria (Fabricius) were collected in northern Georgia in late October 2009, where they were invading homes in large numbers. This is the first known occurrence of this species and the family Plataspidae in the New World. Megacopta cribraria was previously known from Asia and Australia. A key is provided to separate Plataspidae from other families of Pentatomoidea in America North of Mexico. A diagnosis and figures are provided to facilitate recognition of M. cribraria. Reported host plants and other aspects of the biology of this species are reviewed. Megacopta cribraria is considered a pest of numerous legumes in Asia, has the potential to provide biological control of kudzu, Pueraria montana var. lobata (Willd.) Ohwi, (Fabaceae) and likely will continue to be a household pest in the vicinity of kudzu fields as well as become a pest of North American legume crops

    Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites

    Full text link
    Dynamic experiments with Al-W granular/porous composites revealed qualitatively different behavior with respect to shear localization depending on bonding between Al particles. Two-dimensional numerical modeling was used to explore the mesomechanics of the large strain dynamic deformation in Al-W granular/porous composites and explain the experimentally observed differences in shear localization between composites with various mesostructures. Specifically, the bonding between the Al particles, the porosity, the roles of the relative particle sizes of Al and W, the arrangements of the W particles, and the material properties of Al were investigated using numerical calculations. It was demonstrated in simulations that the bonding between the "soft" Al particles facilitated shear localization as seen in the experiments. Numerical calculations and experiments revealed that the mechanism of the shear localization in granular composites is mainly due to the local high strain flow of "soft" Al around the "rigid" W particles causing localized damage accumulation and subsequent growth of the meso/macro shear bands/cracks. The "rigid" W particles were the major geometrical factor determining the initiation and propagation of "kinked" shear bands in the matrix of "soft" Al particles, leaving some areas free of extensive plastic deformation as observed in experiments and numerical calculations.Comment: 10 pages, 14 figures, submitted to Journal of Applied Physic

    Guaranteed clustering and biclustering via semidefinite programming

    Get PDF
    Identifying clusters of similar objects in data plays a significant role in a wide range of applications. As a model problem for clustering, we consider the densest k-disjoint-clique problem, whose goal is to identify the collection of k disjoint cliques of a given weighted complete graph maximizing the sum of the densities of the complete subgraphs induced by these cliques. In this paper, we establish conditions ensuring exact recovery of the densest k cliques of a given graph from the optimal solution of a particular semidefinite program. In particular, the semidefinite relaxation is exact for input graphs corresponding to data consisting of k large, distinct clusters and a smaller number of outliers. This approach also yields a semidefinite relaxation for the biclustering problem with similar recovery guarantees. Given a set of objects and a set of features exhibited by these objects, biclustering seeks to simultaneously group the objects and features according to their expression levels. This problem may be posed as partitioning the nodes of a weighted bipartite complete graph such that the sum of the densities of the resulting bipartite complete subgraphs is maximized. As in our analysis of the densest k-disjoint-clique problem, we show that the correct partition of the objects and features can be recovered from the optimal solution of a semidefinite program in the case that the given data consists of several disjoint sets of objects exhibiting similar features. Empirical evidence from numerical experiments supporting these theoretical guarantees is also provided

    Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

    Full text link
    Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot's joints to an internal gait phasing variable. A second role is to induce a low dimensional system, the zero dynamics, that captures the underactuated aspects of a robot's model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte
    • …
    corecore