744 research outputs found
Sexualidad y Ciclo Sexual de la Cuna Gata Mycteroperca tigris de los Arrecifes Coralinos del Banco de Campeche (Sureste del Golfo de México)
Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects
Under the terms of the Creative Commons Attribution (CC BY) license to their work.We report on the modification of the optical and mechanical properties of a silicon 1D optomechanical crystal cavity due to thermo-optic effects in a high phonon/photon population regime. The cavity heats up due to light absorption in a way that shifts the optical modes towards longer wavelengths and the mechanical modes to lower frequencies. By combining the experimental optical results with finite-difference time-domain simulations, we establish a direct relation between the observed wavelength drift and the actual effective temperature increase of the cavity. By assuming that the Young's modulus decreases accordingly to the temperature increase, we find a good agreement between the mechanical mode drift predicted using a finite element method and the experimental one.This work was supported by the EU through the project TAILPHOX (ICT-FP7-233883) and the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish projects TAPHOR (MAT2012-31392).Peer Reviewe
Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon
8 págs.; 5 figs.; 1 tab.Self-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N ) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.This work has been supported by the LiNaBioFluid project of
the H2020 program of the European Commission (FETOPEN-
665337) as well as by the Spanish TEC2014-52642-C2-
1-R. MG-L and JH-R acknowledge the grants respectively
awarded by the Spanish Ministry of Education and the
Spanish Ministry of Economy and Competiveness.Peer Reviewe
Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation
Within the Tamm-Dancoff approximation ab initio approaches describe excitons
as packets of electron-hole pairs propagating only forward in time. However, we
show that in nanoscale materials excitons and plasmons hybridize, creating
exciton--plasmon states where the electron-hole pairs oscillate back and forth
in time. Then, as exemplified by the trans-azobenzene molecule and carbon
nanotubes, the Tamm-Dancoff approximation yields errors as large as the
accuracy claimed in ab initio calculations. Instead, we propose a general and
efficient approach that avoids the Tamm--Dancoff approximation, and correctly
describes excitons, plasmons and exciton-plasmon states
Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing
We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing setup. The beam astigmatism leads to the formation of two separate diskshaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable crosssection are successfully produced in the phosphate glass using this approach. © 2009 Optical Society of America.This work was partially supported by the Spanish Ministry of Science and Innovation under TEC2008-01183 project. A. R. and W. G. acknowledge their I3P-CSIC postdoctoral con- tracts (co-funded by the European Social Fund). D. P. and A. F. acknowledge their grants under Projects TEC 2005-00074 and TEC 2006-04538.Peer Reviewe
- …
