8 research outputs found

    Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    Get PDF
    BACKGROUND: High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. METHODOLOGY/PRINCIPAL FINDINGS: Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8-98.5; I(2) = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7-99.3; I(2) = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1-99.8; I(2) = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. CONCLUSIONS/SIGNIFICANCE: These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study

    No full text
    Background: The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients’ outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes. Methods: We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic stroke (including intracranial haemorrhage or subarachnoid haemorrhage) or traumatic brain injury. We included patients with altered levels of consciousness at ICU admission or within the first 48 h after the brain injury, as defined by the Glasgow Coma Scale (GCS) eye response score of 1 (no eye opening) and a GCS motor response score of at least 5 (not obeying commands). Patients not admitted to the ICU or with other forms of acute brain injury were excluded from the study. Between-centre differences in use of ICP monitoring were quantified by using the median odds ratio (MOR). We used the therapy intensity level (TIL) to quantify practice variations in ICP interventions. Primary endpoints were 6 month mortality and 6 month Glasgow Outcome Scale Extended (GOSE) score. A propensity score method with inverse probability of treatment weighting was used to estimate the association between use of ICP monitoring and these 6 month outcomes, independently of measured baseline covariates. This study is registered with ClinicalTrial.gov, NCT03257904. Findings: Between March 15, 2018, and April 30, 2019, 4776 patients were assessed for eligibility and 2395 patients were included in the study, including 1287 (54%) with traumatic brain injury, 587 (25%) with intracranial haemorrhage, and 521 (22%) with subarachnoid haemorrhage. The median age of patients was 55 years (IQR 39–69) and 1567 (65%) patients were male. Considerable variability was recorded in the use of ICP monitoring across centres (MOR 4·5, 95% CI 3·8–4·9 between two randomly selected centres for patients with similar covariates). 6 month mortality was lower in patients who had ICP monitoring (441/1318 [34%]) than in those who were not monitored (517/1049 [49%]; p<0·0001). ICP monitoring was associated with significantly lower 6 month mortality in patients with at least one unreactive pupil (hazard ratio [HR] 0·35, 95% CI 0·26–0·47; p<0·0001), and better neurological outcome at 6 months (odds ratio 0·38, 95% CI 0·26–0·56; p=0·0025). Median TIL was higher in patients with ICP monitoring (9 [IQR 7–12]) than in those who were not monitored (5 [3–8]; p<0·0001) and an increment of one point in TIL was associated with a reduction in mortality (HR 0·94, 95% CI 0·91–0·98; p=0·0011). Interpretation: The use of ICP monitoring and ICP management varies greatly across centres and countries. The use of ICP monitoring might be associated with a more intensive therapeutic approach and with lower 6-month mortality in more severe cases. Intracranial hypertension treatment guided by monitoring might be considered in severe cases due to the potential associated improvement in long-term clinical results. Funding: University of Milano-Bicocca and the European Society of Intensive Care Medicine

    Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study

    No full text
    Background: The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients’ outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes. Methods: We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic stroke (including intracranial haemorrhage or subarachnoid haemorrhage) or traumatic brain injury. We included patients with altered levels of consciousness at ICU admission or within the first 48 h after the brain injury, as defined by the Glasgow Coma Scale (GCS) eye response score of 1 (no eye opening) and a GCS motor response score of at least 5 (not obeying commands). Patients not admitted to the ICU or with other forms of acute brain injury were excluded from the study. Between-centre differences in use of ICP monitoring were quantified by using the median odds ratio (MOR). We used the therapy intensity level (TIL) to quantify practice variations in ICP interventions. Primary endpoints were 6 month mortality and 6 month Glasgow Outcome Scale Extended (GOSE) score. A propensity score method with inverse probability of treatment weighting was used to estimate the association between use of ICP monitoring and these 6 month outcomes, independently of measured baseline covariates. This study is registered with ClinicalTrial.gov, NCT03257904. Findings: Between March 15, 2018, and April 30, 2019, 4776 patients were assessed for eligibility and 2395 patients were included in the study, including 1287 (54%) with traumatic brain injury, 587 (25%) with intracranial haemorrhage, and 521 (22%) with subarachnoid haemorrhage. The median age of patients was 55 years (IQR 39–69) and 1567 (65%) patients were male. Considerable variability was recorded in the use of ICP monitoring across centres (MOR 4·5, 95% CI 3·8–4·9 between two randomly selected centres for patients with similar covariates). 6 month mortality was lower in patients who had ICP monitoring (441/1318 [34%]) than in those who were not monitored (517/1049 [49%]; p<0·0001). ICP monitoring was associated with significantly lower 6 month mortality in patients with at least one unreactive pupil (hazard ratio [HR] 0·35, 95% CI 0·26–0·47; p<0·0001), and better neurological outcome at 6 months (odds ratio 0·38, 95% CI 0·26–0·56; p=0·0025). Median TIL was higher in patients with ICP monitoring (9 [IQR 7–12]) than in those who were not monitored (5 [3–8]; p<0·0001) and an increment of one point in TIL was associated with a reduction in mortality (HR 0·94, 95% CI 0·91–0·98; p=0·0011). Interpretation: The use of ICP monitoring and ICP management varies greatly across centres and countries. The use of ICP monitoring might be associated with a more intensive therapeutic approach and with lower 6-month mortality in more severe cases. Intracranial hypertension treatment guided by monitoring might be considered in severe cases due to the potential associated improvement in long-term clinical results. Funding: University of Milano-Bicocca and the European Society of Intensive Care Medicine
    corecore