59 research outputs found

    Simulation of cellular irradiation with the CENBG microbeam line using GEANT4

    Full text link
    Light-ion microbeams provide a unique opportunity to irradiate biological samples at the cellular level and to investigate radiobiological effects at low doses of high LET ionising radiation. Since 1998 a single-ion irradiation facility has been developed on the focused horizontal microbeam line of the CENBG 3.5 MV Van de Graaff accelerator. This setup delivers in air single protons and alpha particles of a few MeV onto cultured cells, with a spatial resolution of a few microns, allowing subcellular targeting. In this paper, we present results from the use of the GEANT4 toolkit to simulate cellular irradiation with the CENBG microbeam line, from the entrance to the microprobe up to the cellular medium.Comment: 6 pages, 8 figures, presented at the 2003 IEEE-NSS conference, Portland, OR, USA, October 20-24, 200

    Two-vibron bound states in alpha-helix proteins : the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling

    Full text link
    The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron dynamics in an α\alpha-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity of each amide-I vibration is considered and the vibron dynamics is described according to the small polaron approach. A unitary transformation is performed to remove the intramolecular anharmonicity and a modified Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then, a mean field procedure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity modifies the vibron-phonon interaction which results in an enhancement of the dressing effect. In addition, both the anharmonicity and the dressing favor the occurrence of two different bound states which the properties strongly depend on the interplay between the anharmonicity and the dressing. Such a dependence was summarized in a phase diagram which characterizes the number and the nature of the bound states as a function of the relevant parameters of the problem. For a significant anharmonicity, the low frequency bound states describe two vibrons trapped onto the same amide-I vibration whereas the high frequency bound states refer to the trapping of the two vibrons onto nearest neighbor amide-I vibrations.Comment: may 2003 submitted to Phys. Rev.

    Dynamical structure factor of a nonlinear Klein-Gordon lattice

    Get PDF
    The quantum modes of a nonlinear Klein-Gordon lattice have been computed numerically [L. Proville, Phys. Rev. B 71, 104306 (2005)]. The on-site nonlinearity has been found to lead to phonon bound states. In the present paper, we compute numerically the dynamical structure factor so as to simulate the coherent scattering cross section at low temperature. The inelastic contribution is studied as a function of the on-site anharmonicity. Interestingly, our numerical method is not limited to the weak anharmonicity and permits one to study thoroughly the spectra of nonlinear phonons

    On the low-temperature lattice thermal transport in nanowires

    Full text link
    We propose a theory of low temperature thermal transport in nano-wires in the regime where a competition between phonon and flexural modes governs the relaxation processes. Starting with the standard kinetic equations for two different types of quasiparticles we derive a general expression for the coefficient of thermal conductivity. The underlying physics of thermal conductance is completely determined by the corresponding relaxation times, which can be calculated directly for any dispersion of quasiparticles depending on the size of a system. We show that if the considered relaxation mechanism is dominant, then at small wire diameters the temperature dependence of thermal conductivity experiences a crossover from T1/2T^{1/2} to T3T^3-dependence. Quantitative analysis shows reasonable agreement with resent experimental results.Comment: 12 pages, 3 eps figure

    Quantum Diffusion of H/Ni(111) through the Monte Carlo Wave Function Formalism

    Get PDF
    We consider a quantum system coupled to a dissipative background with many degrees of freedom using the Monte Carlo Wave Function method. Instead of dealing with a density matrix which can be very high-dimensional, the method consists of integrating a stochastic Schrodinger equation with a non-hermitian damping term in the evolution operator, and with random quantum jumps. The method is applied to the diffusion of hydrogen on the Ni(111) surface below 100 K. We show that the recent experimental diffusion data for this system can be understood through an interband activation process, followed by quantum tunnelling.Comment: In press at Phys.Rev.Let
    corecore