2,140 research outputs found
DNA double helices for single molecule electronics
The combination of self-assembly and electronic properties as well as its
true nanoscale dimensions make DNA a promising candidate for a building block
of single molecule electronics. We argue that the intrinsic double helix
conformation of the DNA strands provides a possibility to drive the electric
current through the DNA by the perpendicular electric (gating) field. The
transistor effect in the poly(G)-poly(C) synthetic DNA is demonstrated within a
simple model approach. We put forward experimental setups to observe the
predicted effect and discuss possible device applications of DNA. In
particular, we propose a design of the single molecule analog of the Esaki
diode.Comment: 4 pages, 4 figur
Structural fluctuations and quantum transport through DNA molecular wires: a combined molecular dynamics and model Hamiltonian approach
Charge transport through a short DNA oligomer (Dickerson dodecamer) in
presence of structural fluctuations is investigated using a hybrid
computational methodology based on a combination of quantum mechanical
electronic structure calculations and classical molecular dynamics simulations
with a model Hamiltonian approach. Based on a fragment orbital description, the
DNA electronic structure can be coarse-grained in a very efficient way. The
influence of dynamical fluctuations arising either from the solvent
fluctuations or from base-pair vibrational modes can be taken into account in a
straightforward way through time series of the effective DNA electronic
parameters, evaluated at snapshots along the MD trajectory. We show that charge
transport can be promoted through the coupling to solvent fluctuations, which
gate the onsite energies along the DNA wire
Dissipative Effects in the Electronic Transport through DNA Molecular Wires
We investigate the influence of a dissipative environment which effectively
comprises the effects of counterions and hydration shells, on the transport
properties of short \DNA wires. Their electronic structure is captured by a
tight-binding model which is embedded in a bath consisting of a collection of
harmonic oscillators. Without coupling to the bath a temperature independent
gap opens in the electronic spectrum. Upon allowing for electron-bath
interaction the gap becomes temperature dependent. It increases with
temperature in the weak-coupling limit to the bath degrees of freedom. In the
strong-coupling regime a bath-induced {\it pseudo-gap} is formed. As a result,
a crossover from tunneling to activated behavior in the low-voltage region of
the - characteristics is observed with increasing temperature. The
temperature dependence of the transmission near the Fermi energy, , manifests an Arrhenius-like behavior in agreement with recent transport
experiments. Moreover, shows a weak exponential dependence on
the wire length, typical of strong incoherent transport. Disorder effects smear
the electronic bands, but do not appreciably affect the pseudo-gap formation
Quantum transport through a DNA wire in a dissipative environment
Electronic transport through DNA wires in the presence of a strong
dissipative environment is investigated. We show that new bath-induced
electronic states are formed within the bandgap. These states show up in the
linear conductance spectrum as a temperature dependent background and lead to a
crossover from tunneling to thermal activated behavior with increasing
temperature. Depending on the strength of the electron-bath coupling, the
conductance at the Fermi level can show a weak exponential or even an algebraic
length dependence. Our results suggest a new environmental-induced transport
mechanism. This might be relevant for the understanding of molecular conduction
experiments in liquid solution, like those recently performed on poly(GC)
oligomers in a water buffer (B. Xu et al., Nano Lett 4, 1105 (2004)).Comment: 5 pages, 3 figure
Complex microwave conductivity of Na-DNA powders
We report the complex microwave conductivity, , of
Na-DNA powders, which was measured from 80 K to 300 K by using a microwave
cavity perturbation technique. We found that the magnitude of near
room temperature was much larger than the contribution of the surrounding water
molecules, and that the decrease of with decreasing temperature was
sufficiently stronger than that of the conduction of counterions. These results
clearly suggest that the electrical conduction of Na-DNA is intrinsically
semiconductive.Comment: 16 pages, 7 figure
Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We numerically investigate localization properties of electronic states in a
static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with
realistic parameters obtained by quantum-chemical calculation. The randomness
in the on-site energies caused by the electron-phonon coupling are completely
correlated to the off-diagonal parts. In the single electron model, the effect
of the hydrogen-bond stretchings, the twist angles between the base pairs and
the finite system size effects on the energy dependence of the localization
length and on the Lyapunov exponent are given. The localization length is
reduced by the influence of the fluctuations in the hydrogen bond stretchings.
It is also shown that the helical twist angle affects the localization length
in the poly(dG)-poly(dC) DNA polymer more strongly than in the
poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy
dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure
Classical properties of low-dimensional conductors: Giant capacitance and non-Ohmic potential drop
Electrical field arising around an inhomogeneous conductor when an electrical
current passes through it is not screened, as distinct from 3D conductors, in
low-dimensional conductors. As a result, the electrical field depends on the
global distribution of the conductivity sigma(x) rather than on the local value
of it, inhomogeneities of sigma(x) produce giant capacitances C(omega) that
show frequency dependence at relatively low omega, and electrical fields
develop in vast regions around the inhomogeneities of sigma(x). A theory of
these phenomena is presented for 2D conductors.Comment: 5 pages, two-column REVTeX, to be published in Physical Review
Letter
Vibrational Enhancement of the Effective Donor - Acceptor Coupling
The paper deals with a simple three sites model for charge transfer phenomena
in an one-dimensional donor (D) - bridge (B) - acceptor (A) system coupled with
vibrational dynamics of the B site. It is found that in a certain range of
parameters the vibrational coupling leads to an enhancement of the effective
donor - acceptor electronic coupling as a result of the formation of the
polaron on the B site. This enhancement of the charge transfer efficiency is
maximum at the resonance, where the effective energy of the fluctuating B site
coincides with the donor (acceptor) energy.Comment: 5 pages, 3 figure
Optical absorption in semiconductor quantum dots: Nonlocal effects
The optical absorption of a single spherical semiconductor quantum dot in an
electrical field is studied taking into account the nonlocal coupling between
the field of the light and the polarizability of the semiconductor. These
nonlocal effects lead to a small size anf field dependent shift and broadening
of the excitonic resonance which may be of interest in future high precision
experiments.Comment: 6 pages, 4 figure
Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction
Here we present the calculations of incoherent current flowing through the
two-site molecular device as well as the DNA-based junction within the
rate-equation approach. Few interesting phenomena are discussed in detail.
Structural asymmetry of two-site molecule results in rectification effect,
which can be neutralized by asymmetric voltage drop at the molecule-metal
contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC)
DNA molecule reveal the coupling- and temperature-independent saturation effect
of the current at high voltages, where for short chains we establish the
inverse square distance dependence. Besides, we document the shift of the
conductance peak in the direction to higher voltages due to the temperature
decrease.Comment: 12 pages, 6 figure
- …
