1,478 research outputs found
Magnetic-field-induced Stoner transition in a dilute quantum Hall system
In a recent paper [Phys.Rev.B.\textbf{84}, 161307 (2011)], experimental data
on spin splitting in the integer quantum Hall effect has been reported in a
high mobility dilute 2D electron gas with electron density as low as 0.2
10 cm . In this work, we show that an excellent
\emph{quantitative} description of these data can be obtained within the model
of the magnetic-field-induced Stoner transition in the quantum Hall regime.
This provides a powerful tool to probe the non-trivial density dependance of
electron-electron interactions in the dilute regime of the 2D electron gas
Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios
Flat beams -- beams with asymmetric transverse emittances -- have important
applications in novel light-source concepts, advanced-acceleration schemes and
could possibly alleviate the need for damping rings in lepton colliders. Over
the last decade, a flat-beam-generation technique based on the conversion of an
angular-momentum-dominated beam was proposed and experimentally tested. In this
paper we explore the production of compressed flat beams. We especially
investigate and optimize the flat-beam transformation for beams with
substantial fractional energy spread. We use as a simulation example the
photoinjector of the Fermilab's Advanced Superconducting Test Accelerator
(ASTA). The optimizations of the flat beam generation and compression at ASTA
were done via start-to-end numerical simulations for bunch charges of 3.2 nC,
1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with
different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400),
0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm
after full compression, respectively with peak currents as high as 5.5 kA for a
3.2-nC flat beam. These parameters are consistent with requirements needed to
excite wakefields in asymmetric dielectric-lined waveguides or produce
significant photon flux using small-gap micro-undulators.Comment: 17
Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers
Energy recovering an electron beam after it has participated in a
free-electron laser (FEL) interaction can be quite challenging because of the
substantial FEL-induced energy spread and the energy anti-damping that occurs
during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such
an energy recovery scheme was implemented by properly matching the longitudinal
phase space throughout the recirculation transport by employing the so-called
energy compression scheme. In the present paper,after presenting a
single-particle dynamics approach of the method used to energy-recover the
electron beam, we report on experimental validation of the method obtained by
measurements of the so-called "compression efficiency" and "momentum
compaction" lattice transfer maps at different locations in the recirculation
transport line. We also compare these measurements with numerical tracking
simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&
Interplay among spin, orbital effects and localization in a GaAs two-dimensional electron gas in a strong in-plane magnetic field
The magnetoresistance of a low carrier density, disordered GaAs based
two-dimensional (2D) electron gas has been measured in parallel magnetic fields
up to 32 T. The feature in the resistance associated with the complete spin
polarization of the carriers shifts down by more than 20 T as the electron
density is reduced, consistent with recent theories taking into account the
enhancement of the electron-electron interactions at low densities.
Nevertheless, the magnetic field for complete polarization, Bp, remains 2-3
times smaller than predicted for a disorder free system. We show, in particular
by studying the temperature dependance of Bp to probe the effective size of the
Fermi sea, that localization plays an important role in determining the spin
polarization of a 2D electron gas.Comment: Published in the Physical Review
Fractional quantum Hall effect in CdTe
The fractional quantum Hall (FQH) effect is reported in a high mobility CdTe
quantum well at mK temperatures. Fully-developed FQH states are observed at
filling factor 4/3 and 5/3 and are found to be both spin-polarized ground state
for which the lowest energy excitation is not a spin-flip. This can be
accounted for by the relatively high intrinsic Zeeman energy in this single
valley 2D electron gas. FQH minima are also observed in the first excited (N=1)
Landau level at filling factor 7/3 and 8/3 for intermediate temperatures.Comment: Submitte
Influence of Source Propagation Direction and Shear Flow Profile in Impedance Eduction of Acoustic Liners
The acoustic impedance of liners is a key parameter for their design, and depends on the flow conditions, i.e., the sound pressure level and the presence of a grazing flow. The surface impedance of a locally reacting liner is defined as a local intrinsic property relating the acoustic pressure to the normal acoustic particle velocity at the liner surface. Impedance eduction techniques are now widely used to retrieve the impedance of liners in aeroacoustic facilities in the presence of a shear grazing flow. While surface impedance is intrinsic by definition, the educed impedance has recently been shown to depend on the direction of the incident waves relative to the mean flow. Different studies have investigated this issue by considering different acoustic propagation models used in the education process in the hope of matching the educed values. The purpose of the present work is to continue the previous investigations by evaluating the influence of the shear flow profile on the educed impedance, while considering a Bayesian inference process in order to evaluate the uncertainty on the educed values. The identified uncertainties were not able to totally account for the observed discrepancies between educed impedances
Emotions while awaiting lung transplantation : a comprehensive qualitative analysis
Patients awaiting lung transplantation are at risk of negative emotional and physical experiences. How do they talk about emotions? Semi-structured interviews were performed (15 patients). Categorical analysis focusing on emotion-related descriptions was organized into positive–negative–neutral descriptions: for primary and secondary emotions, evaluation processes, coping strategies, personal characteristics, emotion descriptions associated with physical states, (and) contexts were listed. Patients develop different strategies to maintain positive identity and attitude, while preserving significant others from extra emotional load. Results are discussed within various theoretical and research backgrounds, in emphasizing their importance in the definition of emotional support starting from the patient’s perspective
Bunch length measurements at the TESLA Test Facility using a streak camera
A streak camera provides a direct and convenient way to measure bunch lengths in the millimeter and submillimeter range. At the TESLA Test Facility (TTF) a streak camera with a subpicosecond resolution is in operation. A bunch compressor is used to produce bunch lengths down to 250m for the operation of the TTF Free Electron Laser. Bunch length measurements are presented and compared with simulations
- …
