1,478 research outputs found

    Magnetic-field-induced Stoner transition in a dilute quantum Hall system

    Full text link
    In a recent paper [Phys.Rev.B.\textbf{84}, 161307 (2011)], experimental data on spin splitting in the integer quantum Hall effect has been reported in a high mobility dilute 2D electron gas with electron density as low as 0.2 ×\times 1011^{11} cm 2^{-2}. In this work, we show that an excellent \emph{quantitative} description of these data can be obtained within the model of the magnetic-field-induced Stoner transition in the quantum Hall regime. This provides a powerful tool to probe the non-trivial density dependance of electron-electron interactions in the dilute regime of the 2D electron gas

    Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios

    Full text link
    Flat beams -- beams with asymmetric transverse emittances -- have important applications in novel light-source concepts, advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat-beam-generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat-beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of the Fermilab's Advanced Superconducting Test Accelerator (ASTA). The optimizations of the flat beam generation and compression at ASTA were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400), 0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm after full compression, respectively with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.Comment: 17

    Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Get PDF
    Energy recovering an electron beam after it has participated in a free-electron laser (FEL) interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy anti-damping that occurs during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper,after presenting a single-particle dynamics approach of the method used to energy-recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called "compression efficiency" and "momentum compaction" lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&

    Interplay among spin, orbital effects and localization in a GaAs two-dimensional electron gas in a strong in-plane magnetic field

    Full text link
    The magnetoresistance of a low carrier density, disordered GaAs based two-dimensional (2D) electron gas has been measured in parallel magnetic fields up to 32 T. The feature in the resistance associated with the complete spin polarization of the carriers shifts down by more than 20 T as the electron density is reduced, consistent with recent theories taking into account the enhancement of the electron-electron interactions at low densities. Nevertheless, the magnetic field for complete polarization, Bp, remains 2-3 times smaller than predicted for a disorder free system. We show, in particular by studying the temperature dependance of Bp to probe the effective size of the Fermi sea, that localization plays an important role in determining the spin polarization of a 2D electron gas.Comment: Published in the Physical Review

    Fractional quantum Hall effect in CdTe

    Get PDF
    The fractional quantum Hall (FQH) effect is reported in a high mobility CdTe quantum well at mK temperatures. Fully-developed FQH states are observed at filling factor 4/3 and 5/3 and are found to be both spin-polarized ground state for which the lowest energy excitation is not a spin-flip. This can be accounted for by the relatively high intrinsic Zeeman energy in this single valley 2D electron gas. FQH minima are also observed in the first excited (N=1) Landau level at filling factor 7/3 and 8/3 for intermediate temperatures.Comment: Submitte

    Influence of Source Propagation Direction and Shear Flow Profile in Impedance Eduction of Acoustic Liners

    Get PDF
    The acoustic impedance of liners is a key parameter for their design, and depends on the flow conditions, i.e., the sound pressure level and the presence of a grazing flow. The surface impedance of a locally reacting liner is defined as a local intrinsic property relating the acoustic pressure to the normal acoustic particle velocity at the liner surface. Impedance eduction techniques are now widely used to retrieve the impedance of liners in aeroacoustic facilities in the presence of a shear grazing flow. While surface impedance is intrinsic by definition, the educed impedance has recently been shown to depend on the direction of the incident waves relative to the mean flow. Different studies have investigated this issue by considering different acoustic propagation models used in the education process in the hope of matching the educed values. The purpose of the present work is to continue the previous investigations by evaluating the influence of the shear flow profile on the educed impedance, while considering a Bayesian inference process in order to evaluate the uncertainty on the educed values. The identified uncertainties were not able to totally account for the observed discrepancies between educed impedances

    Emotions while awaiting lung transplantation : a comprehensive qualitative analysis

    Get PDF
    Patients awaiting lung transplantation are at risk of negative emotional and physical experiences. How do they talk about emotions? Semi-structured interviews were performed (15 patients). Categorical analysis focusing on emotion-related descriptions was organized into positive–negative–neutral descriptions: for primary and secondary emotions, evaluation processes, coping strategies, personal characteristics, emotion descriptions associated with physical states, (and) contexts were listed. Patients develop different strategies to maintain positive identity and attitude, while preserving significant others from extra emotional load. Results are discussed within various theoretical and research backgrounds, in emphasizing their importance in the definition of emotional support starting from the patient’s perspective

    Bunch length measurements at the TESLA Test Facility using a streak camera

    Get PDF
    A streak camera provides a direct and convenient way to measure bunch lengths in the millimeter and submillimeter range. At the TESLA Test Facility (TTF) a streak camera with a subpicosecond resolution is in operation. A bunch compressor is used to produce bunch lengths down to 250μ\mum for the operation of the TTF Free Electron Laser. Bunch length measurements are presented and compared with simulations
    corecore