28 research outputs found

    Faithful reproduction of network experiments

    Get PDF
    The proliferation of cloud computing has compelled the research community to rethink fundamental aspects of network systems and architectures. However, the tools commonly used to evaluate new ideas have not kept abreast of the latest developments. Common simulation and emulation frameworks fail to provide scalability, fidelity, reproducibility and execute unmodified code, all at the same time. We present SELENA, a Xen-based network emulation framework that offers fully reproducible experiments via its automation interface and supports the use of unmodified guest operating systems. This allows out-of-the-box compatibility with common applications and OS components, such as network stacks and filesystems. In order to faithfully emulate faster and larger networks, SELENA adopts the technique of time-dilation and transparently slows down the passage of time for guest operating systems. This technique effectively virtualizes the availability of host’s hardware resources and allows the replication of scenarios with increased I/O and computational demands. Users can directly control the tradeoff between fidelity and running-times via intuitive tuning knobs. We evaluate the ability of SELENA to faithfully replicate the behaviour of real systems and compare it against existing popular experimentation platforms. Our results suggest that SELENA can accurately model networks with aggregate link speeds of 44 Gbps or more, while improving by four times the execution time in comparison to ns3 and exhibits near-linear scaling properties.This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2658260.265827

    Home Network Management Policies: Putting the User in the Loop.

    No full text
    Home networks are becoming increasingly complex but existing management solutions are not simple to use since they are not tailored to the needs of typical home-users. In this paper we present a new approach to home network management that allows users to formulate quite sophisticated comic-strip policies using an attractive iPad application. The policies are based on the management wishes of home users elicited in a user study. Comic-strip policies are passed to a Policy engine running on a new Home Network Router designed to facilitate a variety of management tasks. We illustrate our approach via a number end-to-end experiments in an actual home deployment, using our prototype implementation. © 2012 IEEE

    Langzeitverlauf bei metastasierendem Dottersacktumor

    No full text
    corecore