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Abstract

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless
sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless
sensor networks is an important problem since these kinds of networks manage critical applications and data. The
specific constraints of WSN make the problem even more critical, and effective solutions have not yet been
implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive
features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the
primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks
like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based
on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The
algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms

positives using collaboration.

have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false
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1 Introduction

One of the fastest growing sectors in recent years
has undoubtedly been that of wireless sensor net-
works (WSNs). WSNs consist of spatially distributed
autonomous sensors that monitor a wide range of ambi-
ent conditions and cooperate to share data across the
network. WSNs are increasingly being introduced into
our daily lives. Potential fields of applications can be
found, ranging from the military to home control com-
mercially or industrially, to name a few. The emergence
of new wireless technologies such as Zigbee and IEEE
802.15.4 has enabled the development of interoperable
commercial products, which is important for ensuring
scalability and low cost. Most WSN solutions operate on
unlicensed frequency bands. In general, they use indus-
trial, scientific, and medical (ISM) bands, like the world-
wide available 2.4-GHz band. This band is also used by a
large number of popular wireless applications, for exam-
ple, those working over Wi-Fi or Bluetooth. Thus, the
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unlicensed spectrum bands are becoming overcrowded.
As a result, coexistence issues on unlicensed bands have
been the subject of extensive research, and in particu-
lar, it has been shown that IEEE 802.11 networks can
significantly degrade the performance of Zigbee/802.15.4
networks when operating on overlapping frequency
bands [1].

The increasing demand for wireless communication
presents a challenge to have an efficient spectrum use. To
address this challenge, cognitive radio (CR), which enables
opportunistic access to the spectrum, has emerged as the
key technology. A CR is an intelligent wireless commu-
nication system, aware of its surrounding environment,
and it adapts its internal parameters to achieve reliable
and efficient communications. These new networks have
many applications, such as the cognitive use of the TV
white space spectrum or making secure calls in emer-
gency situations. In order to create these new appli-
cations, CR differentiates between two kinds of users:
primary users (PUs), those who are licensed users, and
secondary users (SUs), those who try to use the same
bands when they detect a spectral hole. Adding cognition

© 2013 Blesa et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


https://core.ac.uk/display/192539679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Blesa et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:215

http://jwcn.eurasipjournals.com/content/2013/1/215

to the existing WSN infrastructure brings about a lot
of benefits. However, not only will it provide access to
new spectrum bands but it will also provide better prop-
agation characteristics. By adaptively changing system
parameters like modulation schemes, transmit power, car-
rier frequency, and constellation size, a wide variety of
data rates can be achieved. This will certainly improve
the power consumption, network life, and reliability
of a WSN.

The nature of large, dynamic, adaptive, cognitive wire-
less sensor networks presents significant security scheme
design challenges. A cognitive wireless sensor network
has many constraints and many different features as com-
pared to traditional WSNs. While security challenges have
been widely tackled with regard to traditional networks,
it is a novel area in cognitive wireless sensor networks.
The wireless medium is inherently less secure than the
wired one because its broadcast nature makes eavesdrop-
ping easier. Any transmission can be easily intercepted,
altered, or replayed by an adversary. The wireless medium
allows an attacker to easily intercept valid packets and
inject malicious ones. Cognitive features enable dynamic
reconfiguration to avoid these attacks. However, mali-
cious nodes can use dynamic reconfiguration to create
new attacks such as primary user emulation (PUE). PUE
is an attack where a malicious node emulates the behav-
ior of an incumbent node with the purpose of using the
radio spectrum for its own interest or denying the access
to other nodes.

To avoid these attacks, several approaches have been
developed, most of them based on location. However,
other cognitive features such as collaboration and learn-
ing have not been sufficiently exploited. We need to take
into account that most WSNs have been developed in
order to carry out a specific application. As a result, nodes
usually have their own behavior pattern. This character-
istic gives the network an opportunity to create a node
profile for each sensor. These profiles can be created and
optimized, thanks to cognitive features such as spectrum
awareness, learning, and collaboration. In this paper, sim-
ulations show how collaboration is essential for improving
detection. Moreover, collaboration is the parameter that
contributes most efficiently. The node profiles are used
to detect anomalies in behavior, an example of which are
PUE attacks.

The organization of this paper is as follows: In Section 2,
works done on security for dealing with PUE attacks
are reviewed. In Section 3, a brief introduction to the
main topics related to behavior learning and security
is provided. Then, in Section 4, the assumptions taken
into account for the simulations are specified. Section 5
explains the general architecture of the system, while
Sections 6 and 7 provide its evaluation. Finally, the con-
clusions are drawn in Section 8.

Page20f 13

2 Related work

According to Section 1, it is very clear that CWSNs face
the dangerous problem of security. Several attacks could
be adapted from WSNs to the new paradigm of cognitive
networks. Over the past 10 years, some approaches related
to security on cognitive radio networks have appeared.
They describe specific attacks against these networks, but
few countermeasures have been proposed.

Most studies on security are focused on PUE detection.
Given the origin of cognitive radio networks, the efficient
use of TV spectrum in the USA, early studies used loca-
tion in order to detect malicious attacks. In this case, PUs
are TV towers with a precise behavior and location.

In [2], Chen and Park present the first method for
detecting a PUE attack based on location. The idea of this
method is to differentiate the attacker from a licensed user
by comparing the transmission origin with the previously
known PU position. The same authors use a mechanism
based on location in [3]. Moreover, they include some new
parameters, such as signal power or RF fingerprints, to
decide the nature of the signal.

In [4], the authors assume that the attacker is close to
the victim, and the real PU is much farther from the SUs
than the attacker. Moreover, the position of each node,
including the attacker, is fixed. Given this assumption,
SUs can learn about the characteristics of the spectrum
according to the received power. The authors in [5] follow
a similar approach. Despite not using any location infor-
mation, they assume a static scenario with the PU much
farther away from other possible malicious nodes than
the SUs.

More location-based countermeasures can be found in
[6] and [7]. In the first work, secondary users calculate the
estimated position of the PUE attacker and then propagate
this knowledge to reach a coordinate decision. The sec-
ond work is focused on the algorithm used to detect the
position of the PUE attacker.

All these countermeasures are based only on location.
This characteristic cannot be used in some CWSN scenar-
ios where both SUs and PUs can be mobile. Therefore, it
is very clear that another approach should be adopted.

A few different solutions, not based on location, have
been presented. In [8], the authors use the phase noise
of a local oscillator as a fingerprint to differentiate the
incumbent signals from the attacking ones.

Finally, in [9], the authors present a differential game
approach to mitigate the PUE attack. Based on the
assumption that the PUE attacker has less energy than the
PUs, they look for the optimal sensing strategy for SUs.
The Nash equilibrium solution is obtained.

Despite the fact that these two last approaches are valid
for mobile PUE attackers in CWSN, the algorithms imple-
mented require relatively high computational resources,
which is an impossible requirement for some WSNs.



Blesa et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:215

http://jwen.eurasipjournals.com/content/2013/1/215

In this paper, a solution based on the use of node
behavior is presented. Two effective and also simple algo-
rithms have been implemented: cumulative sum and data
clustering.

3 Behavior-based system

As geolocation countermeasures do, defenses based on
behavior try to model the PUs. The model is used to look
for the differences between PUs and attackers. For exam-
ple, in [6], authors use some radio parameters to decide if
the transmitter is an incumbent transmitter or an attacker.
These parameters are transmitted power and location. For
a typical TV scenario on CR, the PU model can be very
precise. However, as with geolocation countermeasures,
the previous studies do not work with CWSNs. Unfor-
tunately, a model for PUs on CWSNs does not exist yet.
PUs are usually more unpredictable than in previous sce-
narios. Moreover, the PU’s behavior can be very different
depending on the application. However, if we focus on
limited scenarios, for example, ambient intelligence in a
home or a building, the PU is specifically defined. Param-
eters like power transmission, spectrum time occupancy,
and transmission frequency could be modeled.

Learned behaviors of these parameters allow the system
to create some profiles that are then compared with peri-
odically acquired measures. It is easy to understand that
when a PUE attack happens, an anomaly in the learned
parameters can be detected. The intrinsic goals of an
attacker make it impossible to have a complete likeness
between a PU and a PUE attacker. For example, if the
goal of a PUE attack is to use a whole frequency band, it
needs to transmit more frequently, with more power and
different types of packets than those of a normal PU.

In [10], the authors use packet traffic to model sen-
sor behavior. Packet train size and packet train length,
inter-packet times, and payload size are used to character-
ize the packet traffic. They apply these profiles to detect
anomalies, such as sinkhole attacks.

In [11], another approach is used to monitor the node’s
behavior. In this work, a group of capable nodes form
the attack detection system (ADS). These nodes analyze
the packets transmitted among their neighbors. The rea-
son for limiting the ADS to only a few nodes is that
a continuously monitoring node consumes much more
energy than a normal one. Along the same lines, in [12],
some monitor nodes sniff the communications in order
to detect anomalies. They base their decisions on some
principles of WSNs such as message symmetry or node
similarity.

Finally, in [13], the nodes create neighbor profiles
according to the sequence of received packets. The attack
is detected using the distance between sequences. The dis-
tance is calculated by the number of differences between
them.
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In conclusion, the previous works use traffic moni-
toring to create a behavior model of the network. In
this work, we can use other parameters such as power
transmission or time between packets to detect behav-
ior anomalies in CWSNs. To the best of our knowledge,
this is the first time that the anomaly detection approach
is applied for PUE attacks on CWSNs. Other cognitive
features such as spectrum sensing and learning make it
possible to implement the algorithms. The advantage of
these parameters is that they can be applied to more flexi-
ble networks or independently of the application. Another
advantage over the previous works is the use of collabo-
ration between nodes. The final decision in the detection
of anomalies is collaborative. The more nodes collabo-
rating on the decisions, the better are the PUE detection
results.

4 Assumptions and CWSN scenario

In our model, a CWSN consists of a set S = s1,s2,...,sn
of n cognitive wireless sensor nodes with different roles.
Each node has a certain transmission range. Their loca-
tion and their radio parameters are unknown. However,
we assume that the nodes have a stationary behavior that
allows learning based on spectrum sensing.

We assume a different behavior for the SUs and PUs
in CWSNs because of the nature of these networks. For
example, CWSNs usually operate on ISM bands, where
anyone can transmit without a license. Because of this
feature, the definition of PUs and SUs should be differ-
ent. For this CWSN definition, the differences between
PUs and SUs are based on the priority of their func-
tionality. For example, a fire sensor would have more
priority than a temperature sensor. While PUs take pref-
erence because they are responsible for critical sensors
and information, SUs only send the information when the
channel is free. In a common CWSN, the number of nodes
can usually vary between 5 and 200. For our study, we
assume that networks with more than 200 nodes are not
common.

In our scenario, spectrum sensing is carried out by mul-
tiple wireless modules contained in all the network nodes.
More specifically, these interfaces work on the ISM bands
(2.4 GHz, 868 MHz, and 433 MHz). All of them can
extract information from the environment: received signal
power, noise power, or time between packets. The infor-
mation is processed, stored, and shared according to the
implemented algorithm. We further assume the existence
of a virtual control channel (VCC) for sharing this infor-
mation, with no extra overhead over regular cognitive
communications.

Apart from the primary and secondary users forming
the network, the attackers are the key in security scenar-
ios. The PUE attack in cognitive networks usually belongs
to one of these two categories:
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e Selfish PUE attacks. In this attack, the attacker’s
objective is to maximize its own spectrum usage.

e Malicious PUE attacks. The objective of this attack is
to obstruct SUs from accessing the spectrum.

Our PUE model is described by the following set of
assumptions:

1. A PUE attacker has a similar hardware and radio
interface characteristics to those of the rest of nodes.

2. The network does not have any information about
the position of the PUE attacker or its strategy.

3. The PUE attacker and the PUs cannot have exactly
the same radio behavior.

As we explain in Section 3, we assume that regardless of
the kind of PUE attack, the malicious node has to change
its behavior. If the attacker is a selfish PUE, the malicious
node has to change its power transmission or transmis-
sion rate in order to acquire more spectrum time. In this
case, the SUs receive new information that changes the
perception of the spectrum usage. In the other case, if
the attacker is a malicious PUE, the attacker node has to
change the behavior in order to affect the transmission
of the SUs. An example of this situation is a home secu-
rity sensor network where a malicious PU is captured and
used to attack the network. If it tries to perturb the cor-
rect behavior of the network, it should change the radio
parameters to interfere with PUs and SUs. If the attacker
continues to have the same behavior since the creation of
the network and if it uses exactly the same radio param-
eters, attack detection becomes almost impossible using
either behavior learning or any other method. Moreover,
in this situation, the network behavior is not affected, so
the attack has no effect.

5 System architecture

The system architecture presented uses collaboration in
order to achieve the anomaly detection goal. Its main
characteristics are distributed learning and collaboration
on final decisions.

5.1 Spectrum sensing and learning

Spectrum sensing is the first module of the entire chain
in the system. All the nodes in the system sense the radio
spectrum and analyze the data to create a precise profile of
each node. Spectrum sensing in this system is performed
by detecting the signal level on each channel. Each node is
aware of the spectrum occupancy in its near range. More-
over, the nodes are able to detect all the valid packets
over a reception power threshold. Despite the fact that
the packets are usually sent to a specific node, the rest of
the nodes in a sensing stage can capture them and extract
information from them such as the source, the sink, and
the time stamp.
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Cognitive wireless nodes have some constraints that
limit the system such as low computational resources,
low memory, or limited batteries. This makes it impos-
sible to create complex detection algorithms or to store
large databases. In order to overcome these limitations,
this work proposes two non-parametric algorithms: the
cumulative sum (CUSUM) and data clustering algorithms
[14]. Both approaches are implemented in order to detect
changes in some spectrum sensing features. The CUSUM
is an algorithm used in WSNs in order to detect changes
in the mean value of a stochastic process. The advantages
of this algorithm in CWSNs are its low computational
requirements and its lack of assumptions of any previous
knowledge about the PUE attack. As it has been explained
in Section 3, if the scenario is limited, the sensor nodes
usually have a stationary behavior. Moreover, the attack
happens at an unknown time. These are the reasons why
the CUSUM algorithm is applicable in this approach.

In this case, some key features, such as received power,
are necessary to model the nodes’ behavior. A good
approach is to save the key parameters that define the fea-
ture. In this work, the number of measures, the average,
and the variance are stored in each node repository. The
average (X,,) and the variance (S,) are calculated using
only their previous values and their current sample as
shown in Equations 1, 2, and 3.

— 1 n—1 x

Xp=— sz = Xy—1 + = )
"= n n

I _

S == a7 — |Xu)> = E2 — X, 2)
"

2
— s—hn—1 «x
E;gz:En—l P _{_;Vl’ (3)

where E2 is the average of the squared values. So, each
node creates a table with the following data:

{NodelD, n, X,,, E2, S2}. (4)

Throughout the learning stage, the nodes update and
refine these values which will be used as the base in the
anomaly detection algorithm.

The second algorithm is called data clustering. The
learning process consists of finding groups with similar
data points. Firstly, the data points are clustered. Then,
these clusters are used to detect anomalies.

The algorithm creates flexible width clusters with a vari-
able radius. Each node creates its own cluster set. At the
end of the learning phase, the clusters are marked normal.
Then, in the detection phase, if a new data does not fit in
any cluster, the system assumes it as an anomaly.



Blesa et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:215

http://jwen.eurasipjournals.com/content/2013/1/215

The data clustering learning phase can be summarized
in the following steps:

1. Sense the spectrum and obtain a new data sample: D;

2. Normalize D;

3. Find the nearest cluster which satisfies d < R;, where
R; is the cluster’s radius and d is the distance
between the data and the cluster centroid

(a) If (d < Ryj), add the data to the cluster and
update the cluster parameters
(b) If (d > Rj), create a new cluster

The advantage of the data clustering approach is that it
considers multiple features as a whole, whereas CUSUM
uses the features in isolation.

5.2 Anomaly detection

When the system has captured enough packets, the nodes
are ready to compare the created profiles against the
new samples. The optimizer applies the non-parametric
algorithm and sends anomaly warnings to other nodes
through the VCC. The learning time adopted for each
algorithm has been modified in order to check the speed
of the algorithms. Depending on the learning time, the
system has more or less packets in order to generate the
profiles.

In the CUSUM algorithm, the comparison between new
samples and the profile is performed according to the
Euclidean distance. If the distance is lower than a number
of standard deviations, the sample is considered a normal
value. However, if the sample is outside the allowed range,
the optimizer sends an anomaly warning. This allows the
algorithm configuration to use either high threshold val-
ues, with a low false positive rate and a slow detection,
or low threshold values that imply more false positives
but faster detection. In this work, the threshold varies
between 1 and 2 standard deviations.

The data clustering algorithm compares the data
obtained with the set of clusters. If the data sample fits in
some cluster, it will be marked as normal. Otherwise, the
data will be labeled as an anomaly.

In this work, the optimizer filters the warnings and only
marks them as a PUE attack when the anomaly contin-
ues for a configurable time. Each node has a window time
in order to manage the spurious effects of the channel
and to minimize the false alarms. This window time is
configurable depending on the PU transmission rate. If
a node detects a configurable number of anomalies in
this time, it generates a node-level alarm in the system
by sending a message through the VCC channel. When
the window time is running out, all the anomalies are
removed. The specific values of these parameters are pre-
sented in Section 6.2. The window time improves the
results, reducing the random effects of the channel.
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5.3 Collaboration

The previous chapters describe how the network nodes
can collect information from the spectrum as a key fea-
ture in cognitive solutions. The stored information used
by an isolated node could be useful for a particular opti-
mization, but if the final goal of the network is the general
optimization of a parameter, in this case security, collabo-
rative strategies are essential. Collaboration strategies are
a common solution in other cognitive fields like spec-
trum sensing and also in security scenarios, such as PUE
detection. The next section shows how the introduction of
collaborative detection significantly improves the results.

In this work, the SUs collaborate by sharing informa-
tion about the detected anomalies. This information can
be results from spectrum sensing or anomalies detected
by a single node. When one node marks another as a pos-
sible PUE attacker, it sends a message to the rest of the
SUs. Only when a custom number of nodes have labeled
the node as a possible PUE attacker will the whole system
marks the node as an attacker.

This collaborative method creates a two-level alarm sys-
tem: the node-level alarm and the network alarm. The
node-level alarm is sent when an isolate node detects
the maximum allowable number of alarms. On the other
hand, the network alarm is transmitted when a config-
urable number of collaborative nodes sends a node-level
alarm for the same attacker. The collaborative method
improves the system because it eliminates the possi-
ble mistakes derived from the nodes’ location and, for
instance, the variations in the received power and the
number of packets.

The collaborative system in this work is distributed over
the SUs. Each SU has its spectrum sensing data and with
this information creates its node-level alarms. The collab-
oration in this work includes the reception of these alarms
through the ideal VCC channel, described in Section 6.1,
and it is use to confirm if a node has an anomalous
behavior confirmed by more than one SU.

6 Experimental results

6.1 Simulation tools

The proposed countermeasures have been tested on a
CWSN simulator [15]. This simulator has been developed
as an enhanced version of the well-known Castalia sim-
ulator. The structure of Castalia has been improved by
providing it with cognitive features. The CWSN simula-
tor is responsible for scenario definition, spectrum state
simulation, and communication between nodes from the
physical to the application layer. It supports the cognitive
features by means of the cognitive module, which has the
following parts:

® Repository. It retrieves information about local
and/or remote nodes: information learned, decisions
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made, or current state. The kind of information
stored depends on the context and the requirements
of the system.

e Access. This module lets a local repository access the
repository of remote nodes. At the same time, it
exports a subset of the local repository to remote
nodes.

e Policy. This module enforces the requirements for
the global system depending on several factors. In
this paper, security is the policy being optimized.

e Optimizer. This block processes the repository
information bearing in mind the requirements
imposed by the policy module. Decisions regarding
the behavior of the local node are the results of
processing. They are stored in the repository and
evaluated by the executor.

e Executor. This module performs the decisions made
by the optimizer.

Furthermore, the simulator also provides the VCC, a
new method for sharing cognitive information among
the CR modules of the nodes. CR modules can access
exported information from remote repositories through
this channel. It allows CR modules to be aware of their
surroundings and even of the whole network. In this
work, the VCC is completely ideal, and it does not
take into account any delay or loss as a normal channel
does.

The Castalia simulator channel model is an important
aspect for these experiments. The channel model of this
simulator is realistic, including the average path loss, the
time variability, and random shadowing [16]. This vari-
ability in the channel conditions contributes negatively to
the detection of anomalies, but it represents real condi-
tions. Finally, the packet reception probability is imple-
mented in the channel model in order to take into account
the signal-to-noise ratio.

6.2 Simulation experiments
The attacker is implemented as a SU that changes its
behavior in a precise moment acting like a PU. The
attacker will try to adapt all its radio parameters according
to the PU’s behavior. Some of them, such as modulation,
encoding, or carrier frequency, probably will be exactly
like those of the PU for two reasons. Firstly, the attackers
and the PUs usually have the same hardware characteris-
tics; therefore, the attackers can imitate the PU. Secondly,
the attackers do not need to change these parameters
to reach their possible goals, namely to use more spec-
trum, to transmit information to other destinations, or to
obstruct SU transmissions.

Accordingly, it is reasonable to restrict the parame-
ters that the attackers will change to transmitted power
and occupied spectrum bandwidth. In this work, the
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received power and the time between packets have been
used to detect anomalies, like a PUE attack on the
network.

By setting the transmitted power and the transmission
rate of the attacker to values similar to those used by a real
PU, we can check how precise the algorithm is in detecting
this kind of attack. In order to test the presented solu-
tion, when an attacker changes its behavior, the deviation
in transmitted power is 1 dBm constantly and the trans-
mission rate varies 1 packet/s in comparison to those of
a normal PU. Even with this small change, the system has
demonstrated to be very efficient in detecting anomalies.
This assumption tries to simulate the worst case, where
the PUs and the PUE attacker radio parameters are very
close. In a real situation, if the attacker is a selfish PUE,
it will try to transmit with the highest possible power in
order to acquire the spectrum for itself. If the attacker is
a malicious PUE, it will try to transmit with the highest
possible transmission rate in order to affect the SU com-
munications. Therefore, although our assumption could
be a not entirely real situation, it is the worst case and
the best scenario in order to test the sensibility of our
algorithms. In a real case, where the differences between
the attacker and the rest of the nodes will be larger, the
algorithm could be adapted in order to reduce the false
positive rate.

Several simulations have been executed in the simulator
to extract results and to draw conclusions from the work.
The scenarios have some common characteristics.

Each scenario has been run 100 times in order to add
randomness. The scenario area is a 30 m x 30 m square.
The complete simulation time is 300 s. The number of
nodes in the simulation varies from 50 to 200, including
one server, three PUs, and a variable number of attackers.
The learning stage covers the first 100 s in the CUSUM
case and the first 60 s in the data clustering algorithm. The
SUs and PUs send information to the sink, but the SUs
only send the information when the channel is not being
used by any PU. The location of the nodes is uniform.
This improves the testing scenarios. The Castalia simu-
lator channel model is used. This includes path loss and
shadowing. The PUs’ packet transmission is 2 packets/s,
and their transmission power is —1 dBm in all cases. The
PUE attackers’ packet rate is 2 packets/s in the CUSUM
algorithm and 4 packets/s in the clustering algorithm. The
transmission power is 0 dBm. The attacks start between
100 and 200 s, depending on the scenario. The maximum
node-level alarm is 5. Finally, the window time for clear-
ing the alarms is 5 s in the CUSUM algorithm and 2 s in
the clustering algorithm.

More than 30 scenarios have been run in order to test
the operation of both algorithms against PUE attacks.
Section 6.3 shows the results that best summarizes the
performance of our approach.
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Figure 1 PUE detection results with 50 nodes using CUSUM algorithm. Results of the simulations with the CUSUM algorithm and 50 nodes in

6.3 Results and discussion

However, for some combinations of parameters, some

In Figures 1, 2, 3, where the PUE attack is simulated, normal nodes are detected as attackers. In Figure 1, we
the results of the CUSUM algorithm are presented. The  can see the results of a simulation with 50 nodes, includ-
system has shown a very good behavior in attack detec- ing 1 PUE attacker, 3 PUs, 1 sink, and 45 SUs. In this
tion, with a detection rate of over 99% in all simulations.  situation, the decisions made individually by each node
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Figure 3 False positives in a multiple PUE attack using CUSUM algorithm. Multiple attack against the CUSUM algorithm.

are complemented by the collaboration among them. Each
line represents the same scenario where the percentage of
SUs that collaborate on detection is variable. The x-axis
represents the number of standard deviations that a sens-
ing power measure can deviate from the learning average
to be considered as a normal value. Finally, the y-axis
represents the false positive percentage.

As we can see, the percentage of collaborative nodes
is essential in PUE attack detection. For a percentage of
around 20 of collaborating nodes, the results are very
good, with a false positive rate of under 10% using a

margin of 1 standard deviation for anomaly warnings
regarding the average in the profile. If we increase this
parameter to 1.3, the results are very satisfactory with false
positive and false negative rates near 0%.

Figure 2 shows another scenario with worse conditions
than the previous one. In this case, the nodes send lower
quality information to the other nodes than in the previ-
ous scenario. This is because the node’s optimizer does
not filter the anomalies, as Section 5.2 explains, and sends
too many anomaly warnings through the VCC. However,
if the margin of standard deviations is increased to 1.5 and

initial cluster radius = 0.1

cluters ©
anomalies

Figure 4 Cluster layout for different initial radius. Distribution of the data in a specific clustering algorithm scenario, depending on the initial

radius.

initial cluster radius = 0.3
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anomalies




Blesa et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:215

http://jwen.eurasipjournals.com/content/2013/1/215

Page 9 0of 13

304

254

201

false positives (%)
-
&
1

T T
0,1 0,2 0,3 0,4 0,5

T
0,6 0,7 0,8 0,9 1

initial cluster radius

14,00% 16,00%

Collaborative nodes (%)
18,00%

20,00%

22,00%

24,00%

Figure 5 False positives using data clustering. Results of the simulations with the clustering algorithm and 50 nodes in the network.

the number of collaborative nodes is over 30%, the results
are good enough.

However, if collaboration between nodes is eliminated
and the filter in the nodes is improved, the system shows
poor results. The system is not capable of discriminating
between the PUE attackers and normal behavior.

Another interesting result can be seen in Figure 3. In this
figure, the behavior of the system during a multiple PUE
attack can be observed, where ten malicious nodes attack
the system after the learning time. In this case, where 25%
of the nodes are attackers, the system behavior gets worse.
But, even in this case, if the number of collaborative nodes
is over 20%, the results are satisfactory.

The results show that the most important parameter
for improving PUE attack detection is the number of

collaborative nodes. Other parameters, such as the appli-
cation algorithm or the filter and the margin to mark data
as anomalous, also affect the results but to a lesser extent.

The same analysis has been carried out taking into
account the bandwidth occupied by the nodes instead of
the received power. In this case, the results are not good
enough. The reason for the poor results is the behavior of
the secondary users. As we have explained before, the sec-
ondary nodes only send packets when the channel is free,
so the occupied bandwidth has a greater variance than
that obtained in the power detection-based scenarios. The
PUE attack has been impossible to detect with good preci-
sion using the occupied bandwidth. This only means that
the presented algorithm does not work with our definition
of the SUs.
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Figure 6 False positives using data clustering and ten PUE attackers. Multiple attack against the clustering algorithm.
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The data clustering algorithm provide a solution to the
problem of using multiple features at the same time. Com-
bining two features, the power received and the time
between packets, the data clustering algorithm aims to
detect the PUE attack with a lower false positive rate.
Figures 4, 5, 6 summarize the results obtained with this
approach. The simulations represent the same scenario as
the one of the CUSUM algorithm. The percentage of col-
laborative nodes is the same, and the rate of false positives
is the parameter presented. However, in the data cluster-
ing algorithm, the variable parameter is the initial cluster
radius. These values range from 0.1 to 1 over the normal-
ized value of the centroid. This parameter directly affects
the false positive rate as we can see in Figure 4. The smaller
the radius is, the greater the demand for grouping data
becomes.

As we can see in Figure 5, the algorithm obtains satis-
factory results when the initial radius is higher than 0.3.
These results have been obtained simulating multiple sce-
narios and setups. The number of collaborating nodes is
also important in the data clustering algorithm but to a
lesser degree than in the CUSUM case. Here, with only
14% of the SUs collaborating, the results are acceptable.

A new scenario with ten PUE attackers is presented in
Figure 6 in order to test the second algorithm in a more
complex situation. Here, 20% of the network nodes are
malicious. The results are a little bit worse than in the pre-
vious scenario but are really good for a radius greater than
0.3. In this situation, the false positive rate is under 2%.

Both algorithms, CUSUM and data clustering, have
demonstrated the ability to detect anomalies caused
by PUE attacks. In the previous figures, the optimal
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Figure 8 False positives for different learning times in data clustering. Results for different learning times in clustering algorithm.
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Figure 9 PUE detection results in a network with 200 nodes using CUSUM algorithm. To test the scalability of the CUSUM algorithm in a

network with 200 nodes.

parameters have been presented. Following these results,
the next section shows a comparison between both algo-
rithms in terms of learning and detection time, scalability,
use of resources, and scenario dependency.

7 Comparison

Figures 7 and 8 represent the results for multiple sce-
narios with a variable learning time. As we can see, the
CUSUM algorithm obtains bad results for any simulated
learning time between 10 and 60 s. As the previous section
showed, the CUSUM algorithm obtains good results from
100 s onward. Meanwhile, the data clustering approach
starts to obtain good results from 30 s onward. This indi-
cates that the data clustering approach is best suited for

dynamic networks in which the learning time can be a
critical feature.

Detection time is another important characteristic. This
is the interval between the beginning of the attack and
the warning emission. Here, the simplicity of the CUSUM
algorithm makes it faster. The time needed to detect the
anomaly is between 0.5 and 1 s. However, the data clus-
tering algorithm takes from 3 to 5 s. The results presented
here do not include the delay for the collaboration. How-
ever, this delay can be ignored if we take into account two
factors: the ideal implementation of the VCC channel and
the redundancy of the WSNss. In these simulations, more
than 50 nodes are presented in a small area of 30 m x 30 m.
This indicates that each sensor detects almost the same
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Figure 10 PUE detection results in a network with 200 nodes using data clustering algorithm. To test the scalability of the clustering
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packets and, for instance, they transmit the same alarms
at a similar time. However, collaboration continues being
necessary in order to eliminate misleading data.

In order to prove the smooth operation of the system on
larger networks, we have simulated a new scenario with
200 nodes. Figure 9 shows the results for the CUSUM
algorithm. If the percentage of collaborating nodes is the
same, the system still differentiates the PUE attack in
almost every simulation, but the results become slightly
worse. This is because more nodes in the same scenario
space can produce more anomalies such as collisions,
interference, higher noise level, or retransmissions.

The main difference in the data clustering scenario is the
independence of the results from the number of collabo-
rating nodes (Figure 10). The false positives rate is under
2% for most setups.

The comparison between CUSUM and data cluster-
ing in terms of resources is very clear. In this case, the
CUSUM approach needs less memory and computational
resources. It saves just one table with only five parameters
that represent the transmissions of each node. However,
the data clustering algorithm needs the same table and an
additional one with the cluster information. Each row in
the table represents a cluster with its centroid, its radius,
and the number of nodes inside it. The learning and
detecting stages also need more computational resources
in order to implement the algorithm. For these reasons,
the CUSUM algorithm is recommended for power saving
applications or extremely simple nodes.

Finally, as a general conclusion, the CUSUM algorithm
performance considerably depends on the simulated sce-
nario and the parameters applied to it, such as learning
time and number of attackers. However, the clustering
approach maintains a good stable performance in most
scenarios. Therefore, if the limitations or requirements
in terms of resources are not critical, the data clustering
algorithm is recommended.

8 Conclusions
In this article, a new approach for detecting PUE attacks
on CWSNs has been described based on anomaly detec-
tion and cognitive features such as sensing, learning,
and collaboration. A cognitive simulator has been used
to develop the scenarios that prove that collaboration is
essential for a good anomaly detection. The results have
been presented in the figures shown in Section 6.
Different layers of the cognitive architecture implement
the tasks needed to achieve the final objective: PUE attack
detection. Cognitive nodes sense the spectrum and cre-
ate neighbor profiles in order to model their behavior. The
information stored on the repository module is used to
warn other nodes about anomalous data. The optimizer
module is responsible for filtering the information and
collaborating with other nodes.

Page 12 0f 13

If the collaborative nodes are over 20% of the total,
the PUE attack detection has satisfactory results, with
99% of attacks being detected and a false positive rate
near 0%, independently of the number of nodes in the
scenario.

Two algorithms have been implemented in the CWSN.
CUSUM is the simplest one, using less resources. How-
ever, data clustering is more suitable for dynamic or com-
plex scenarios. Both have demonstrated to be valid in
order to detect the PUE attack anomalies.
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