31 research outputs found

    Immobilization of Glucose Oxidase on Eupergit C: Impact of Aeration, Kinetic and Operational Stability Studies of Free and Immobilized Enzyme

    Get PDF
    The effect of aeration on the stability of glucose oxidase in the reaction of glucose oxidation to gluconic acid was investigated by determining the operational stability decay rate constant in the process conditions. Eupergit C as a porous carrier was chosen for the enzyme immobilization. To evaluate glucose oxidase operational stability during process conditions, experiments of glucose oxidation were carried out in the repetitive batch reactor with and without continuous aeration at different aeration levels. It was found that the decay rate of the free enzyme linearly depended on the air flow rate. Immobilization of glucose oxidase on Eupergit C significantly enhanced enzyme stability at higher aeration rates. Kinetics of the free and immobilized enzyme was also determined. The mathematical model of glucose oxidation catalysed by free and immobilized glucose oxidase in the batch reactor was developed

    Green Criminology Before ‘Green Criminology’: Amnesia and Absences

    Get PDF
    Although the first published use of the term ‘green criminology’ seems to have been made by Lynch (Green criminology. Aldershot, Hampshire, 1990/2006), elements of the analysis and critique represented by the term were established well before this date. There is much criminological engagement with, and analysis of, environmental crime and harm that occurred prior to 1990 that deserves acknowledgement. In this article, we try to illuminate some of the antecedents of green criminology. Proceeding in this way allows us to learn from ‘absences’, i.e. knowledge that existed but has been forgotten. We conclude by referring to green criminology not as an exclusionary label or barrier but as a symbol that guides and inspires the direction of research

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    High‐pressure CO 2

    No full text
    corecore