37 research outputs found

    RGTA® or ReGeneraTing Agents mimic heparan sulfate in regenerative medicine: from concept to curing patients

    Get PDF
    The importance of extracellular matrix (ECM) integrity in maintaining normal tissue function is highlighted by numerous pathologies and situations of acute and chronic injury associated with dysregulation or destruction of ECM components. Heparan sulfate (HS) is a key component of the ECM, where it fulfils important functions associated with tissue homeostasis. Its degradation following tissue injury disrupts this delicate equilibrium and may impair the wound healing process. ReGeneraTing Agents (RGTA®s) are polysaccharides specifically designed to replace degraded HS in injured tissues. The unique properties of RGTA® (resistance to degradation, binding and protection of ECM structural and signaling proteins, like HS) permit the reconstruction of the ECM, restoring both structural and biochemical functions to this essential substrate, and facilitating the processes of tissue repair and regeneration. Here, we review 25 years of research surrounding this HS mimic, supporting the mode of action, pre-clinical studies and therapeutic efficacy of RGTA® in the clinic, and discuss the potential of RGTA® in new branches of regenerative medicine

    Comité de rédaction

    No full text
    Comité de rédaction. In: Revue de géographie de Lyon, vol. 53, n°1, 1978. p. 2

    The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes.

    No full text
    BACKGROUND: Recently, we showed that the 37-kDa/67-kDa laminin receptor (LRP/LR) acts as the receptor of the cellular prion protein. METHODS: For the present study, we investigated the binding of the murine scrapie prion protein (moPrP27-30) to baby hamster kidney (BHK) cells, using the Semliki Forest virus system. RESULTS: The enhanced binding of moPrP27-30 to BHK cells expressing moLRP::FLAG was inhibited by the LRP/LR-specific antibody W3, which suggests that LRP/LR acts as a receptor for the scrapie form of the prion protein, PrP(Sc). This finding was confirmed by a parallel study that showed that bovine prions are internalized by human enterocytes via LRP/LR. The heparan sulfate mimetics HM5004 and HM2602 reduced PrP27-30 binding to moLRP-expressing cells to approximately 30% and approximately 20%, respectively, at a concentration of 10 microg/mL, whereas pentosan polysulfate (SP54) and phycarin sulfate (PS3) both reduced the binding to approximately 40% at a concentration of 100 microg/mL. CONCLUSIONS: We suggest that the inhibition reported elsewhere of PrP(Sc) synthesis and the incubation times prolonged in rodent models by these sulfated glycans are due to the inhibition of the LRP/LR-dependent binding of prions to the target cells

    Novel glycosaminoglycan mimetic (RGTA, RGD120) contributes to enhance skeletal muscle satellite cell fusion by increasing intracellular Ca2+ and calpain activity

    No full text
    International audienceGlycosaminoglycans (GAG) are classes of molecules that play an important role in cellular processes. The use of GAG mimetics called regenerating agent (RGTA) represents a tool to investigate the effect of GAG moiety on cellular behavior. A first member of the RGTA family (RG1192), a dextran polymers with defined amounts of sulfate, carboxymethyl, as well as hydrophobic groups (benzylamide), was shown to stimulate skeletal muscle repair after damage and myoblast differentiation. To obtain a comprehensive insight into the mechanism of action of GAG mimetics, we investigated the effect on myoblast differentiation of a novel RGTA, named RGD120, which was devoid of hydrophobic substitution and had ionic charge similar to heparin. Myoblasts isolated from adult rat skeletal muscles and grown in primary cultures were used in this study. We found that chronic treatment with RGD120 increased the growth of adult myoblasts and induced their precocious fusion into myotubes in vitro. It also partially overcame the inhibitory effect of the calpain inhibitor N-acetyl-leu-leu-norleucinal (ALLN) on these events. Western blot and zymography analyses revealed that milli calpain was slightly increased by RGD120 chronic treatment. In addition, using fluorescent probes (Indo-1 and Boc-leu-met-MAC), we demonstrated that RGD120 added to prefusing myoblast cultures accelerates myoblast fusion into myotubes, induced an increase of cytosolic free calcium concentration, and concomitantly an increase of intracellular calpain protease activity. Altogether, these results suggested that the efficiency of RGD120 in stimulating myogenesis might be in part explained through its effect on calcium mobilization as well as on the calpain amount and activity
    corecore