772 research outputs found

    Black Holes with Varying Flux: A Numerical Approach

    Get PDF
    We present a numerical study of type IIB supergravity solutions with varying Ramond-Ramond flux. We construct solutions that have a regular horizon and contain nontrivial five- and three-form fluxes. These solutions are holographically dual to the deconfined phase of confining field theories at finite temperature. As a calibration of the numerical method we first numerically reproduce various analytically known solutions including singular and regular nonextremal D3 branes, the Klebanov-Tseytlin solution and its singular nonextremal generalization. The horizon of the solutions we construct is of the precise form of nonextremal D3 branes. In the asymptotic region far away from the horizon we observe a logarithmic behavior similar to that of the Klebanov-Tseytlin solution.Comment: 40 pages, 15 figure

    Scientific Bounty Among Meteorites Recovered from the Dominion Range, Transantarctic Mountains

    Get PDF
    The US Antarctic Meteorite Pro-gram has visited the Dominion Range in the Transantarctic Mountains during several different sea-sons, including 1985, 2003, 2008, 2010, 2014 and 2018. Total recovered meteorites from this region is close to 3000. The 1985 (11 samples), 2003 (141 samples), 2008 (521 samples), 2010 (901 samples), 2014 (562 samples) seasons have been fully classified, and 2018 (865 samples) are in the process of being classified and characterized. Given that close to 2200 samples have been classified so far, with more expected in 2020, now is a good time to summarize the state of the collection. Here we describe the significant samples documented from this area, as well as a large meteorite shower that dominates the statistics of the region

    Turbulence and Chaos in Anti-de-Sitter Gravity

    Full text link
    Due to the AdS/CFT correspondence the question of instability of Anti-de-Sitter spacetimes sits in the intersection of mathematical and numerical relativity, string theory, field theory and condensed matter physics. In this essay we revisit that important question emphasizing the power of spectral methods and highlighting the effectiveness of standard techniques for studying nonlinear dynamical systems. In particular we display explicitly how the problem can be modeled as a system on nonlinearly coupled harmonic oscillators. We highlight some of the many open questions that stem from this result and point out that a full understanding will necessarily required the interdisciplinary cooperation of various communities.Comment: 6 pages, 12 figures. Essay awarded honorable mention in the Gravity Research Foundation essay competition 201

    Tensions and Luscher Terms for (2+1)-dimensional k-strings from Holographic Models

    Full text link
    The leading term for the energy of a bound state of k-quarks and k-antiquarks is proportional to its separation L. These k-string configurations have a Luscher term associated with their quantum fluctuations which is typically a 1/L correction to the energy. We review the status of tensions and Luscher terms in the context of lattice gauge theory, Hamiltonian methods, and gauge/gravity correspondence. Furthermore we explore how different representations of the k-string manifest themselves in the gauge/gravity duality. We calculate the Luscher term for a strongly coupled SU(N) gauge theory in (2+1) dimensions using the gauge/gravity correspondence. Namely, we compute one-loop corrections to a probe D4-brane embedded in the Cvetic, Gibbons, Lu, and Pope supergravity background. We investigate quantum fluctuations of both the bosonic and the fermionic sectors.Comment: 39 pages, reference added, same version to be published in JHE

    Black Holes in Cascading Theories: Confinement/Deconfinement Transition and other Thermal Properties

    Full text link
    We present numerical evidence for a transition between the Klebanov-Strassler background and a solution describing a black hole in the class of cascading solutions in the chirally restored phase. We also present a number of properties of this solution, including the running of the coupling constant, the viscosity to entropy ratio and the drag force on a quark moving in this background.Comment: 34 pages, 7 figures. Version to be published by JHE

    Quasi-local evolution of cosmic gravitational clustering in the weakly non-linear regime

    Full text link
    We investigate the weakly non-linear evolution of cosmic gravitational clustering in phase space by looking at the Zel'dovich solution in the discrete wavelet transform (DWT) representation. We show that if the initial perturbations are Gaussian, the relation between the evolved DWT mode and the initial perturbations in the weakly non-linear regime is quasi-local. That is, the evolved density perturbations are mainly determined by the initial perturbations localized in the same spatial range. Furthermore, we show that the evolved mode is monotonically related to the initial perturbed mode. Thus large (small) perturbed modes statistically correspond to the large (small) initial perturbed modes. We test this prediction by using QSO Lyα\alpha absorption samples. The results show that the weakly non-linear features for both the transmitted flux and identified forest lines are quasi-localized. The locality and monotonic properties provide a solid basis for a DWT scale-by-scale Gaussianization reconstruction algorithm proposed by Feng & Fang (Feng & Fang, 2000) for data in the weakly non-linear regime. With the Zel'dovich solution, we find also that the major non-Gaussianity caused by the weakly non-linear evolution is local scale-scale correlations. Therefore, to have a precise recovery of the initial Gaussian mass field, it is essential to remove the scale-scale correlations.Comment: 22 pages, 13 figures. Accepted for publication in the Astrophysical Journa

    Effect of Silicon on Activity Coefficients of P, Bl, CD, SN, and AG in Liquid Fe-Si, and Implications for Differentiation and Core Formation

    Get PDF
    Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on metal-silicate partitioning of Ni and Co [1,2], and larger effects for Mo, Ge, Sb, As [2]. The effect of Si on many siderophile elements could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Mercury, Moon, and Vesta, for which we have excellent constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples
    corecore