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ABSTRACT 23 

 24 

Aim Quaternary palaeopalynological records collected throughout the Iberian Peninsula and 25 

species distribution models (SDMs) were integrated to gain a better understanding of the 26 

historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We 27 

hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain 28 

stasis in climatic and topographic ecological niche dimensions. In addition, the modelling 29 

results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental 30 

variables affecting their distribution, and to evaluate the ecological segregation between the 31 

two taxa. 32 

Location The Iberian Peninsula. 33 

Methods For the estimation of past Abies distributions, a hindcasting process was used. Abies 34 

pinsapo and A. alba were modelled individually, first calibrating the model for their current 35 

distributions in relation to the present climate, and then projecting it into the past—the last 36 

glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate 37 

simulations. The resulting models were compared with Iberian-wide fossil pollen records to 38 

detect areas of overlap. 39 

Results The overlap observed between past Abies refugia—inferred from fossil pollen 40 

records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies 41 

species. SDMs yielded two well-differentiated potential distributions: A. pinsapo throughout the 42 

Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results 43 

propose that the two taxa remained isolated throughout the Quaternary, indicating a significant 44 

geographical and ecological segregation. In addition, no significant differences were detected 45 

comparing the three projections (present-day, Mid-Holocene and LGM), suggesting a relative 46 

climate stasis in the refuge areas during the Quaternary. 47 

Main conclusions Our results confirm that SDM projections can provide a useful complement 48 

to palaeoecological studies, offering a less subjective and spatially explicit hypothesis 49 

concerning past geographic patterns of Iberian Abies species. The integration of ecological-50 

niche characteristics from known occurrences of Abies species in conjunction with 51 

palaeoecological studies could constitute a suitable tool to define appropriate areas in which to 52 

focus proactive conservation strategies. 53 

 54 

Keywords Abies alba, Abies pinsapo, Iberian Peninsula, PMIP, Quaternary refugia, SDMs. 55 
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INTRODUCTION 56 

 57 

The geographical proximity of two Abies species in the Iberian Peninsula (Abies alba and Abies 58 

pinsapo), with contrasting environmental requirements as well as different morphological traits 59 

(Farjon & Rushforth, 1989), constitutes an unsolved biogeographic and palaeobotanic enigma. 60 

Currently, A. alba is located exclusively in the Pyrenees mountain Range in the north-eastern 61 

Iberian Peninsula (Costa Tenorio et al., 1997), which has a warm temperate climate with a 62 

rainy and warm summer (Cfb Climate class: Köppen-Geiger climate classification by Kottek et 63 

al., 2006). Abies pinsapo (Spanish populations) is found only in southern Spain, specifically in 64 

the south-western Baetic mountain Range (Fig. 1), in a wet Mediterranean climate with a hot 65 

and dry summer (see Csa climate class: Köppen–Geiger climate classification by Kottek et al., 66 

2006). 67 

Abies is currently distributed around the Mediterranean basin with nine species and 68 

one natural hybrid (Vidakovic, 1991). The age and timing of circum-Mediterranean Abies 69 

speciation events as well as their subsequent migrations has been the subject of extensive 70 

debate and analysis in the literature, with recent opinions indicating that the most important 71 

speciation event took place during the Pliocene, when a regional drying trend led to geographic 72 

isolation of drought-sensitive taxa (Hewitt, 1996; Willis & McElwain, 2002). According to 73 

Krussmann (1972) and Farjon & Rushforth (1989), the successive migrations and 74 

fragmentations would have favoured the differentiation of two Abies groups: (1) archaic firs, 75 

represented by subsection Pinsapones Franco, with species having archaic morphological 76 

features (indicating an earlier speciation) such as Abies pinsapo; and (2) modern firs, 77 

represented by subsection Albae (Franco) Franco, these species having modern morphological 78 

characteristics, indicating a later speciation, such as A. alba. These populations, restricted to 79 

moist mountainous habitats during most of the Quaternary, would diverge to the current 80 

diversity of related species (Linares, 2008). 81 

Understanding Quaternary refuge distributions of species has been a core task in 82 

historical biogeography for several reasons. For example, refugia based on biogeographic 83 

evidence can guide palaeoenvironmental reconstructions, or accurate knowledge of 84 

distributional responses to past climate change can provide an excellent calibration for 85 

predictions of the consequences of present-day climate change (Waltari et al., 2007). In the 86 

Iberian Peninsula, Quaternary refugia have been identified based on different types of historical 87 

biogeographic evidence, especially palaeoecological studies, in which glacial refugia for 88 
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emblematic taxa, such as Carpinus betulus L., Castanea sativa Mill., Fagus sylvatica L., 89 

Juglans regia L. and evergreen oaks (Quercus suber L., Quercus ilex L. and Quercus coccifera 90 

L.), have been reported for the most critical periods of the Pleistocene (Carrión & Sánchez-91 

Gómez, 1992; Carrión et al., 2003; Krebs et al., 2004; López de Heredia et al., 2007; López-92 

Merino et al., 2008). Nevertheless, in the case of Abies, given that fir species cannot be 93 

distinguished in palynological analyses, previous studies related to their glacial refugia or past 94 

distribution usually refer to the entire genus (Terhürne-Berson et al., 2004). So far, the fossil 95 

records of Abies have been interpreted based on the presumption that the pollen grains of the 96 

Abies morphotype documented in pollen sequences of south and south-eastern Spain refer to 97 

A. pinsapo (Carrión et al., 2008; Cortés-Sánchez et al., 2008), whereas the pollen grains from 98 

north and north-eastern Spain refer to A. alba populations (Huntley & Birks, 1983). However, 99 

this geographic dichotomy lacks reliable ecological support. 100 

The emerging field of species distribution models (SDMs) offers an independent 101 

perspective on these questions. These models can be used to predict potential distributional 102 

patterns for a given species and to assess the degree of ecological segregation among 103 

different taxa (Guisan & Thuiller, 2005). An SDM represents an approximation of a species’ 104 

ecological niche in the environmental dimension being examined, translated into the 105 

geographic space. Based on the environmental conditions of the sites of known occurrence, 106 

these models constitute valuable tools for analytical biology (Peterson et al., 1999). Such 107 

projections assume that a species is in equilibrium with its environmental requirements—that is, 108 

its distribution is determined primarily by the environment, and not by other factors such as 109 

competition or dispersal limitation. Similarly, under assumptions of niche conservatism 110 

(Peterson, 2003), which have been extensively tested (Martínez-Meyer & Peterson, 2006). 111 

SDMs can be projected onto palaeoclimate models to identify past potential distributions 112 

(Martínez-Meyer et al., 2004). 113 

The history of Iberian Abies species is poorly understood, in part because the 114 

palaeopalynological approach has inherent biases and difficulties, due not only to the lack of 115 

taxonomic precision discussed earlier, but also to limitations on inferring the timing and location 116 

of refugia, restrictions on defining the spatial and temporal distribution range of different 117 

species, and the failure to take into account that some taxa are underrepresented in the fossil 118 

record. Consequently, the distribution of some species is probably underestimated. 119 

Here, we propose the use of SDMs in conjunction with palaeoclimatic models as well 120 

as fossil-pollen records for locating and describing Iberian Abies Quaternary refugia from the 121 

last glacial maximum (LGM) to the present. The combination of these two approaches enables 122 
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far greater detail and accuracy in SDM applications used to predict potential Quaternary 123 

refugia. In addition, this combination allows (1) the assignment of fossil records to A. alba or A. 124 

pinsapo based on the predicted potential distribution patterns for the two species; (2) the 125 

identification of environmental variables affecting their distribution; and (3) an evaluation of the 126 

segregation between the two taxa. 127 

We hypothesize that SDM and palaeorecords are closely correlated, suggesting that 128 

the two approaches converge on similar inferences and that the two in tandem may offer 129 

exciting new insights. 130 

 131 

METHODS 132 

 133 

Abies pinsapo and Abies alba distribution models 134 

 135 

In the present study, A. pinsapo and A. alba were modelled individually, first calibrating the 136 

model for their current distributions in relation to the present climate, and then applying it to the 137 

LGM and the Middle Holocene (Mid-Holocene) periods. This hindcasting process is often used 138 

to estimate previous species distributions (e.g. Pearman et al., 2008). 139 

 140 

Species records 141 

 142 

The forest map of Spain (1 : 200,000) was the cartographic base for estimating the current 143 

range of A. pinsapo and A. alba (Ruiz de la Torre, 1990). Abies pinsapo is restricted to three 144 

populations on calcareous and serpentine substrates in the Baetic mountains, which occur from 145 

900 to 1800 m a.s.l. in the Sierra de Grazalema (Cádiz), Sierra de las Nieves, and Sierra 146 

Bermeja (both in the province of Málaga). Abies alba occupies only the Pyrenees, reaching its 147 

south-western European and Iberian limit in Iraty (Navarra). The Coastal-Catalonian mountain 148 

Range constitutes its south-eastern limit in Spain. The largest A. alba stands are located in the 149 

province of Lleida (17,000 ha). In total, 524 records of A. pinsapo and 240 of A. alba were 150 

randomly sampled on the polygons corresponding to each of the species, ensuring a minimum 151 

distance of 400 m between points, in order to avoid sample autocorrelation effects. The dataset 152 

was randomly split, 75% of which were used to calibrate the algorithm, and 25% to evaluate the 153 

resulting SDMs. 154 

 155 
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Environmental variables 156 

 157 

Nine predictive variables were used as predictors to calibrate SDMs for each species, all of 158 

which had a spatial correlation degree lower than 0.75 (Pearson coefficient). Three of these 159 

represented resource gradients (sensu Austin et al., 1984): annual precipitation (Pann), 160 

precipitation of the driest month (Pmin), and precipitation of the wettest month (Pmax). Three 161 

other variables refer to direct gradients: maximum temperature of the hottest month (Tmax), 162 

minimum temperature of the coldest month (Tmin), and annual temperature (Tann). The last 163 

three correspond to indirect gradients: slope, topographic exposure, and topographic wetness 164 

index (TWI). These latter three variables, derived from the digital elevation model (DEM), are 165 

capable of reproducing the physiological role of certain resources (Guisan & Zimmermann, 166 

2000). Climate data for the present day (1950–1999) were drawn from the Digital Climatic Atlas 167 

of the Iberian Peninsula (Ninyerola et al., 2005). The topographic data came from Shuttle 168 

Radar Topography Mission (SRTM) (http://srtm.csi.cgiar.org/) and were from 90 to 200 m 169 

[(5810 x 4600 cells, Universal Transverse Mercator (UTM) projection, European datum 1950 170 

(ED50)]. The grass-gis software (GRASS Development Team, 2008) was used to provide the 171 

geographical framework. 172 

Current climate data from the Digital Climatic Atlas of the Iberian Peninsula database 173 

(Ninyerola et al., 2005) were used as a basis for developing LGM (21 kyr BP) and Mid-174 

Holocene (6 kyr BP) climate data. Two general atmospheric circulation models (GCM) were 175 

used to generate past climate scenarios for each period in order to avoid the uncertainty of 176 

using one alone: the Community Climate System Model [CCSM, http:// www.ccsm.ucar.edu/, 177 

(Kiehl & Gent, 2004)] and the Model for Interdisciplinary Research on Climate [miroc, ver. 3.2; 178 

http:// www.ccsr.u-tokyo.ac.jp/ehtml/etopindex.shtml]. The original GCM data were downloaded 179 

from the PMIP2 website (http:// www.pmip2.cnrs-gif.fr/). 180 

We then generated an anomaly map for each variable by subtracting values for the 181 

present, pre-industrial (PI) conditions (c. 1950), using the GCM-estimated LGM and Mid- 182 

Holocene values. The GCM data had a spatial resolution of 2.8°, or roughly 300 x 300 km. 183 

These anomaly maps were then interpolated to a 200-m resolution using the spline function in 184 

grass-gis software with the tension option. Finally, the interpolated differences were added to 185 

the high-resolution current climate datasets from the Digital Climatic Atlas of the Iberian 186 

Peninsula to generate estimated climate maps at the LGM and the Mid-Holocene. This 187 

procedure had the dual advantage of producing data at a resolution relevant to the spatial scale 188 
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of analysis, and of calibrating the downscaled LGM and Mid-Holocene climate data to actual 189 

observed climate conditions (Peterson & Nyári, 2008). 190 

Comparison of the results of this GCM with climate reconstructions and other models 191 

show that the direction of climate change is in general correctly estimated in the PMIP2 192 

models, although the degree of cooling in southern Europe is generally underestimated for the 193 

Middle Holocene (Brewer et al., 2007) and LGM (Ramstein et al., 2007). The LGM-simulated 194 

surface climate is colder and drier than PI conditions: global average annual surface 195 

temperature is a cooling of around 4.5 °C from PI conditions with amplification of this cooling at 196 

high latitudes (Otto-Bliesner et al., 2006); similarly, the atmosphere is significantly drier with an 197 

around 18% decrease in precipitable water. The Middle Holocene simulations show a global 198 

annual cooling of < 0.1 °C compared to the PI simulation, and there are no differences in 199 

annual precipitation (Otto-Bliesner et al., 2006; Braconnot et al., 2007). 200 

 201 

Modelling algorithm: MaxEnt 202 

 203 

Maxent (Maximum entropy modelling of species geographic distributions; Phillips et al., 2006; 204 

Phillips & Dudik, 2008) is an algorithm specifically designed to calculate the potential 205 

geographic distribution of a species. It combines artificial intelligence (Machine Learning) and 206 

the Principle of Maximum Entropy (Jaynes, 1957), and thus, out of the wide range of possible 207 

modelling algorithms, provides one of the most accurate predictions (Elith et al., 2006). Maxent 208 

estimates the probability of the presence of any species, determining the maximum entropy 209 

distribution (the closest to uniformity) from a set of records of the presence of a taxon and from 210 

digital cartography of environmental variables, which influence the species distribution (Phillips 211 

et al., 2006). 212 

 213 

Model calibration and evaluation 214 

 215 

A cumulative output format was chosen in order to determine the potential Abies pinsapo and 216 

A. alba distribution. This output represents habitat suitability with continuous values [0, 100] 217 

(Phillips & Dudik, 2008). The algorithm parameters fixed to calibrate the SDMs were stricter 218 

than those recommended by Phillips et al. (2006). The SDMs were evaluated by the area under 219 

the ROC curve (AUC) test provided by the Maxent software using a random data-splitting 220 

approach to establish an evaluation dataset (25% of the entire presence dataset) for A. pinsapo 221 

and A. alba. 222 
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Phillips et al. (2006), in a novel interpretation of AUC being applied only to presence-223 

based algorithms, stated that ‘AUC is the probability that a randomly chosen presence site is 224 

ranked above a random background site’. But the AUC method based on background points 225 

has a known weakness (Lobo et al., 2008): the AUC scores are consistently higher for species 226 

with small ratios between the extent of occurrence and the entire extent of territory under study, 227 

as in the case of rare species such as A. pinsapo. Although there is ongoing discussion about 228 

the reliability of this measure of accuracy (see Peterson et al., 2007; and Lobo et al., 2008, for 229 

further details), this issue is beyond the scope of the present study. 230 

 231 

Analysis of environmental requirements 232 

 233 

The following analyses were also carried out for a comparative evaluation of the environmental 234 

requirements of A. pinsapo and A. alba: (1) principal-components analysis (PCA) over three 235 

groups of environmental variables (topography, temperature and rainfall); and (2) the Wilks test 236 

and Fisher discriminant analysis (Venables & Ripley, 2002) to analyse the differences between 237 

the two species in terms of ecological requirements. The analysis was performed on a random 238 

subsample of presences (A. alba, n = 33; A. pinsapo, n = 44). The R software environment (R 239 

Development Team, 2008) and its Rcmdr package (Fox et al., 2007) were used for the 240 

statistical computing and graphics. 241 

 242 

Fossil records of Abies cf. pinsapo and Abies cf. alba in the Iberian Peninsula 243 

 244 

In relation to our review of all the fossil pollen sequences in the Iberian Peninsula (Spain and 245 

Portugal), Table 1 shows only the fossil evidence which includes Abies pollen. In Portugal, 246 

Abies pollen was completely absent from the pollen deposits analysed (e.g. Van der Knaap & 247 

van Leeuwen, 1994, 1995, 1997). These 35 selected sites are used to locate, geographically 248 

and temporally, Abies species refuges. Unfortunately, no palaeopalynological studies have 249 

been performed to investigate the ranges currently inhabited by A. pinsapo (Fig. 1). The data 250 

for three sites (Padul, Navarrés and Roquetas de Mar) are included in the European Pollen 251 

Data (EPD), and the remaining data set are published but not included in EPD. The criterion for 252 

selecting a sequence was based on Abies pollen-percentage threshold values (occurrences of 253 

c. 1% or greater; see Iglesias, 1998 for supplementary information). The pollen data on Abies 254 

cf. pinsapo, even at the low threshold used here, probably underestimate the distribution of this 255 

tree, because it produces and spreads small amounts of pollen (Arista & Talavera, 1994). Then 256 
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the Abies pollen curves were based on published diagrams, and the percentages were 257 

recalculated when sufficient information was available, to compile a uniform and reliable body 258 

of data. Pollen percentages are calculated using a pollen sum excluding fern spores and hydro-259 

hygrophyte taxa. Table 1 also indicates when the estimated chronology of a pollen sequence 260 

overlaps the LGM (21 kyr BP) or Middle Holocene (6 kyr BP) periods. Spatial coincidences 261 

between pollen records and potential distribution of Abies species was the criterion to assign 262 

the fossil records to A. alba or A. pinsapo. 263 

 264 

RESULTS 265 

 266 

Climate scenarios 267 

 268 

Table 2 shows the summarized values from the final interpolated models (CCSM and MIROC) 269 

and current climate data for the Iberian Peninsula. In addition, differences between values for 270 

the annual temperature (Tann) and temperature of the coldest month (Tmin) for the diverse 271 

climate scenarios are shown (see Fig. S1): at the LGM a cooling of 3 and 2.2 °C (Tann) and 272 

2.5 and 1.9 °C (Tmin) (CCSM and MIROC simulation, respectively) was detected; while in the 273 

Middle Holocene, no significant anomalies were observed. Moreover, the surface temperature 274 

time course for the diverse climate scenarios with respect latitude (from Pyrenees to Straits of 275 

Gibraltar) (see Fig. S2) confirms an amplification of cooling at high latitudes during the LGM 276 

(see Otto-Bliesner et al., 2006 for further information). Iberian model simulations show 277 

decreases from modern values of around 4 °C (near the Pyrenees) and 3 °C (near Gibraltar) 278 

for Tmin. 279 

 280 

Middle Holocene and LGM potential distributions of Abies pinsapo and Abies alba 281 

 282 

The resulting SDMs provided high AUC scores [A. pinsapo: training data (0.999) and test data 283 

(0.998) and A. alba: training data (0.996) and test data (0.992)] according to the evaluation test 284 

provided by the Maxent software. This is a high AUC value, which demonstrates good model 285 

performance. 286 

Comparing the projection of present-day SDMs (Fig. 2) to Mid-Holocene (Fig. 3) and 287 

LGM (Fig. 4) climates under both the CCSM and MIROC GCM climates models, we see that 288 

the overall reconstructed distributions were not dramatically different at the LGM, but that 289 
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suitable areas were more fragmented and discontinuous than in the Middle Holocene and 290 

present day. In particular, we observed reduced continuity of the species’ potential distribution 291 

area across the Pyrenees (A. alba) and Baetic mountain system (A. pinsapo) and a tendency to 292 

persist during the LGM at lower altitudes than those they occupy now or which they occupied 293 

during the Middle Holocene (see Figs S3–S7). 294 

An expansion of these forests around 6000 yr BP is well reflected in our results. The 295 

warming and heavier precipitation (Table 2 and Fig. 3) had a great effect on Abies distribution, 296 

allowing their expansion from glacial refugia with a tendency to rise in altitude as well as in 297 

latitude. The potential distribution of A. pinsapo extended towards the nearest mountain 298 

ranges, to the south of the Iberian Peninsula, spreading to the southeastern end of the Baetic 299 

Range. Even the algorithm reveals several areas of potential distribution on the Mediterranean 300 

coast of the eastern Iberian Peninsula (Fig. 3; see also Fig. S4). In the Middle Holocene, A. 301 

alba displayed a larger and continuous potential distribution area compared with its LGM and 302 

existing distribution in the Pyrenees. Habitable areas were observed in Cantabrian Range, in 303 

which, today, there are no A. alba populations. In general, a tendency to rise in altitude was 304 

observed in both mountain systems. The model also shows suitable habitats in areas towards 305 

the inner Iberian Peninsula, in the Iberian mountain system. 306 

Table 3 shows a heuristic estimate of relative contributions of the environmental 307 

variables to the MaxEnt model. The variables related to the seasonality of the Mediterranean 308 

climate, both pluviometric (e.g. Pmax and Pmin) and thermometric variables (e.g. Tmax and 309 

Tann) contribute greatly to explain the potential distribution of A. pinsapo, in addition to other 310 

topographic variables (e.g. slope), which contribute to the potential model. Precipitation during 311 

the driest month (Pmin), a highly significant feature in regions with Cfb Climate class, was the 312 

most important variable to explain the A. alba distribution model. Also, Tann and Tmin play a 313 

decisive part in this distribution model. Figure 5 illustrates a clear differentiation between the 314 

ecological requirements of the two species, particularly on the axes referring to climatic 315 

variables (temperature and rainfall), in contrast to the overlap of topographic characteristics 316 

between the two habitats. The Fisher discriminant-analysis results (k = 0.064; F = 86.828; P < 317 

0.0001) reinforced the hypothesis of segregation between the two taxa based on ecological 318 

requirements. This analysis assigned the higher coefficients in the linear discrimination 319 

equation (Table 4) to the Tmin (0.0926) and to the Tmax (0.0357). 320 

 321 

Fossil records of Abies cf. pinsapo and Abies cf. alba in the Iberian Peninsula 322 

 323 
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Based on the SDMs results (Figs 2-4), Abies pollen was classified as follows: A. cf. pinsapo, 324 

pollen deposits with codes that ranged from 1 to 15; A. cf. alba, pollen deposits with codes that 325 

ranged from 16 to 35 (Table 1). Spatial coincidences between pollen records and potential 326 

distribution of Abies species were found throughout the Baetic mountains, as well as the 327 

Pyrenees and Cantabrian Range (Figs 1-4 and Table 1). Unfortunately, at the LGM, few pollen 328 

sites were found that reflect the situation of Abies population in the Iberian Peninsula (Padul 329 

and Bajondillo sites in the south; Tramacastilla, Formigal and Las Ranas sites in the Pyrenees), 330 

for that reason the Abies refugia at this time is poorly understood based on palaeopalynological 331 

studies alone. In the Middle Holocene, more pollen sequences were found (four sites in the 332 

Baetic mountains and nine sites in the Pyrenees). 333 

In general terms, during the Quaternary, pollen from A. cf. pinsapo appears throughout 334 

the entire Baetic mountains system, from Gibraltar (Gorham site) to Almería (Roquetas de Mar 335 

site), usually in coastal mountains. However, pollen records from Las Ventanas and Cucú sites 336 

suggest a certain expansion of A. pinsapo towards the inner zone (Table 1; Fig. 1). The most 337 

remarkable fossil evidence was found in the Prebaetic mountains (eastern Iberian Peninsula) 338 

(sites 1–7), areas far from the current distribution of A. pinsapo and of great interest for 339 

understanding the past distribution. Pollen studies indicated that A. alba inhabited mainly the 340 

Pyrenees Range during cool and dry periods, mainly at the foot of the mountain, as well as the 341 

rapid postglacial recovery towards surrounding areas. This suggests that this species held out 342 

in refuges in the Pyrenees area during the last ice age. In addition, pollen from A. cf. alba 343 

appears throughout the entire Cantabrian Range, from Galicia to the Basque Region, usually in 344 

coastal or pre-coastal areas (sites 16–22 and 24). Surprisingly, Abies pollen was also found 345 

towards the inner zone (site 23, located in the foothills of the Iberian mountain system). 346 

 347 

DISCUSSION 348 

 349 

Model accuracy and prediction uncertainty 350 

 351 

The potential distribution models calibrated for Abies pinsapo and A. alba show high AUC 352 

scores, according to the test provided by the modelling software (Phillips et al., 2006). Our 353 

modelling approach relies on a robust method (Maxent) when dealing strictly with presence 354 

data (Elith et al., 2006; Phillips et al., 2006). The resulting SDMs for A. alba and A. pinsapo 355 

should be among the best that can be achieved for our dataset (presence and environmental 356 
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data). The overlap observed between the species’ potential distribution and prior presence of 357 

Abies—inferred from fossil pollen records—some way validates the model predictions made as 358 

well as the predictive ability of SDMs using hindcasting. 359 

However, inconveniences arising from the palaeoclimatic scenarios could add 360 

uncertainty to the predictive models. For example, problems arising because of the appearance 361 

of non-analogous climate conditions when SDMs are projected across major climatic changes, 362 

especially those that occurred in the LGM, then modelling approaches will have unknown or 363 

unpredictable behaviour in predicting in those areas (Pearson et al., 2006). An added 364 

complication may arise because the PMIP model data underestimated the drying and cooling 365 

throughout the Mediterranean basin at the LGM (Ramstein et al., 2007), and so the models 366 

presented could overestimate the Abies distribution during the LGM. In addition, according to 367 

the authors cited earlier, the spatial resolution of the PMIP models may be a supplementary 368 

difficulty, particularly in areas of complex topography such as the Iberian Peninsula. For the 369 

Pyrenees or the Baetic Range, the local climate can differ sharply from the climate simulated in 370 

the corresponding grid box of the models. Enhancing the models’ resolution should improve the 371 

representation of a given region. However, it remains unclear whether the sensitivity of the 372 

models will be affected by changing their resolution. 373 

 374 

Detecting suitable habitats based on SDMs and palaeorecords 375 

 376 

In the present study, by integrating ecological-niche characteristics drawn from the 377 

environmental characteristics of known occurrences of Abies species and palaeoecological 378 

studies, we derived a more refined image of the distribution, discontinuities and segregation 379 

between Iberian Abies species. Some way, niche conservatism has been documented 380 

throughout the present-day distribution of Iberian Abies species (Figs 2-4), and it has been 381 

shown that at the LGM, the distribution area of Abies populations into several locations 382 

corresponding to presumed Pleistocene refugia (Table 1, Fig. 4 and Figs S6 & S7). The overlap 383 

noted between past Abies refugia—inferred from fossil pollen records—and the species’ 384 

potential distribution offers a new interpretation of the Quaternary distribution of the Iberian 385 

Abies species. According to Martínez-Meyer & Peterson (2006), from the standpoint of 386 

historical biology, our results propose that Quaternary distribution areas of some species could 387 

be inferred from present-day habitat characteristics, providing an additional tool for 388 

palaeobiogeography research. 389 
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The results presented here could constitute further evidence for the conservation of 390 

climatic and topographic dimensions of ecological niches over moderate periods of time, 391 

despite strong climatic and environmental changes. The agreement between past and present-392 

day Abies refuge data could be explained by relative climate stasis in the refuge areas and 393 

revolves around the importance of their local intrinsic properties. As suggested by the 394 

palaeopalynological and palaeoclimatic studies (see Tzedakis et al., 2002 and reference 395 

therein), factors that currently lead to high precipitation in some mountain areas of the 396 

Mediterranean basin (essentially, orographic uplift of air charged with moisture from the nearby 397 

coasts) also operated during the LGM, moderating the impact of regional aridity on tree 398 

populations. The palynological data (Table 1) provide evidence for the existence of an 399 

ecologically stable area where local conditions appear to have buffered the extreme effects of 400 

Quaternary climate variability, contributing to the survival of residual Abies populations. 401 

At the LGM, the combined effects of reduced annual precipitation and winter 402 

temperatures throughout the Iberian Peninsula (see Table 2) with a shorter growing season 403 

and also lower atmospheric CO2 concentrations (200 p.p.m. for CO2; see Braconnot et al., 404 

2007), which led to Abies population contraction and fragmentation (Fig. 4 and Figs S6-S7), but 405 

these events were not severe enough to cause their total elimination. One idea bolstering this 406 

assumption is that a gradual southward attenuation of the North Atlantic climate signal probably 407 

occurred at the LGM, as suggested by the Iberian climatic simulations (Fig. S2). Topography is 408 

also a critical factor, which determines the extent to which populations can shift altitudinally in 409 

response to climate change (Tzedakis, 1993; Tzedakis et al., 2002), seeking to evade 410 

extirpation. At the LGM, both the Pyrenees and Baetic Range provided the sufficient 411 

topographical variability to supply a number of microhabitats suitable for survival. A trend to 412 

persist during the LGM at lower altitudes as well as reduced continuity of the species’ potential 413 

distributional area throughout the Pyrenees (A. alba) and Baetic Range (A. pinsapo) were 414 

found in this study (Fig. 4 and Figs S6 & S7). 415 

In the Middle Holocene, a significant expansion of Abies populations is well reflected in 416 

our results by two approaches. During this period, Abies pinsapo and A. alba displayed a larger 417 

and continuous potential distribution area compared with its LGM and current distribution in the 418 

Pyrenees or Baetic Range, respectively (see Figs 1 & 3). The increased precipitation and the 419 

warming (Table 2 and Figs S1 & S2) allowed the spread of Abies throughout Iberian mountains 420 

since the last glacial period. A trend to rise in altitude to avoid the warming was observed in 421 

both Abies species. The occupation area, as well as its altitudinal range in the mountains, has 422 

a very similar feature to present-day potential distribution. Comparing the three projections—423 
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present-day SDM, Mid-Holocene SDM and LGM SDM—we see that the overall reconstructed 424 

distributions did not significantly differ, indicating a high degree of evolutionary stasis in the 425 

Abies climatic requirements (see Svenning, 2003 and references therein). 426 

Previous studies (Terhürne-Berson et al., 2004; Muller et al., 2007) suggest that the 427 

southern Iberian Peninsula was probably a refuge for A. pinsapo. The increasing availability of 428 

pollen sequences, and the fact that such taxa as A. pinsapo are underrepresented in the fossil 429 

record, strengthens the assumption of a wider distribution of A. pinsapo forests throughout the 430 

Baetic Range (including the Prebaetic zone, in eastern Iberia). In addition, some authors (such 431 

as Reille & Lowe, 1993) considered it unlikely that the Pyrenees or the Iberian Peninsula were 432 

refugia during the LMG. However, Terhürne-Berson et al. (2004), Muller et al. (2007) and 433 

Liepelt et al. (2009) reconstructed the location of the last glacial refugia and postglacial spread 434 

of Abies throughout Europe, confirming the long-lasting refuge areas. The SDMs as well as the 435 

fossil evidence suggest a wider Quaternary distribution, which would have extended across the 436 

Pyrenees Range and the Cantabrian mountain system and even reached the Iberian mountain 437 

system, in an intermediate geographic position. Previous studies based on SDM confirm the 438 

presence of A. alba during the LGM in the Pyrenees (Benito Garzón et al., 2007). 439 

 440 

Abies pinsapo and Abies alba ecological segregation 441 

 442 

Abies alba and A. pinsapo niches differ significantly in climatic-niche dimensions (Fig. 5), 443 

pointing to an early evolutionary divergence of the two species. The ecological segregation 444 

suggests that the two species remained geographically isolated throughout their Quaternary 445 

history, although we do not reject the hypothesis that Quaternary contact may have existed 446 

between A. alba and A. pinsapo populations in eastern Iberia (Figs 3 & 4). Geographical 447 

overlap among Abies species seems to have been common during the glacial periods 448 

(Scaltsoyiannes et al., 1999). 449 

SDMs yielded two well-differentiated potential ranges for the Iberian Abies species: the 450 

A. pinsapo range presents in Baetic-Prebaetic mountains in a Mediterranean climate; and the 451 

A. alba range, along the north Atlantic coast and the northeastern Iberian, in temperate 452 

mountainous areas (Figs 2–4). According to Araújo & Pearson (2005) and Pearson (2006), the 453 

previously mentioned overlap provides useful information on the ecological conditions that 454 

allowed some populations of A. pinsapo and A. alba to survive until the present and indicates 455 

that the two species have independent biogeographical dynamics. 456 

 457 
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CONCLUSIONS AND REQUIREMENTS FOR FURTHER RESEARCH 458 

 459 

Our results confirm that SDMs projections can provide a useful complement to 460 

palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning 461 

the past geographic patterns of Iberian Abies species. Additionally, the pollen records provide 462 

evidence for the existence of Abies populations in several locations corresponding to presumed 463 

Pleistocene refugia. The integration of ecological-niche characteristics from known occurrences 464 

of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to 465 

define proper areas in which to focus proactive conservation strategies. The results provide 466 

evidence for the existence of several ecologically stable areas in the Pyrenees and Baetic 467 

Range, where local conditions appear to have buffered the extreme effects of climate 468 

variability, contributing to the long-time survival of Abies populations. This is especially 469 

important to design future projections for Abies species under climate-change scenarios. 470 

 471 
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Figure captions 752 

 753 

Figure 1. Current Abies distribution in the Iberian Peninsula: Abies pinsapo in the Baetic 754 

Range and Abies alba in the Pyrenees Range. Pollen deposits with the code indication are 755 

shown (see complementary information in Table 1). 756 

 757 

Figure 2. Potential distribution of Abies pinsapo and Abies alba at the present in relation to the 758 

current climate. Habitat suitability values are also shown. 759 

 760 

Figure 3. Potential distribution of Abies pinsapo and Abies alba during the Middle Holocene, 761 

under two different general circulation model (GCM) estimates (CCSM and MIROC). In 762 

addition, 35 pollen deposits are also shown. Presence of Abies pollen in pollen deposits during 763 

the Middle Holocene (± 500 yr) is indicated with a star symbol. 764 

 765 

Figure 4. Potential distribution of Abies pinsapo and Abies alba at the last glacial maximum 766 

(LGM), under two general circulation model (GCM) estimates (CCSM and MIROC). In addition, 767 

35 pollen deposits are also shown. Presence of Abies pollen in pollen deposits at the LGM (± 768 

500 yr) is indicated with a star symbol. The Iberian coastline during the LGM is displayed. 769 

 770 

Figure 5. Presence records of Abies alba and Abies pinsapo with respect to three axes 771 

(obtained by principal-components analysis), representing the different groups of environmental 772 

variables (topography, temperature and rainfall). 773 
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